An Improved Upper Bound on the Independent Domination Number in Cubic Graphs of Girth at Least Six

被引:0
|
作者
Gholamreza Abrishami
Michael A. Henning
机构
[1] Ferdowsi University of Mashhad,Department of Applied Mathematics, Faculty of Mathematical Sciences
[2] University of Johannesburg,Department of Mathematics and Applied Mathematics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Independent domination; Cubic graphs; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Henning et al. (Discrete Appl Math 162:399–403, 2014) proved that if G is a bipartite, cubic graph of order n and of girth at least 6, then i(G)≤411n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{4}{11}n$$\end{document}. In this paper, we improve the 411\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{4}{11}$$\end{document}-bound to a 514\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{14}$$\end{document}-bound, and prove that if G is a bipartite, cubic graph of order n and of girth at least 6, then i(G)≤514n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{5}{14}n$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] An Improved Upper Bound on the Independent Domination Number in Cubic Graphs of Girth at Least Six
    Abrishami, Gholamreza
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [2] Independent domination in subcubic graphs of girth at least six
    Abrishami, Gholamreza
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2018, 341 (01) : 155 - 164
  • [3] Independent domination in subcubic bipartite graphs of girth at least six
    Rautenbach, D. (dieter.rautenbach@uni-ulm.de), 1600, Elsevier B.V., Netherlands (162):
  • [4] Independent domination in subcubic bipartite graphs of girth at least six
    Henning, Michael A.
    Loewenstein, Christian
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 399 - 403
  • [5] Independent domination in subcubic bipartite graphs of girth at least six
    Henning, Michael A.
    Löwenstein, Christian
    Rautenbach, Dieter
    Discrete Applied Mathematics, 2014, 162 : 399 - 403
  • [6] An Improved Upper Bound on the Total Restrained Domination Number in Cubic Graphs
    Justin Southey
    Michael A. Henning
    Graphs and Combinatorics, 2012, 28 : 547 - 554
  • [7] An Improved Upper Bound on the Total Restrained Domination Number in Cubic Graphs
    Southey, Justin
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2012, 28 (04) : 547 - 554
  • [8] Domination number of cubic graphs with large girth
    Kral', Daniel
    Skoda, Petr
    Volec, Jan
    JOURNAL OF GRAPH THEORY, 2012, 69 (02) : 131 - 142
  • [9] An improved upper bound on the double Roman domination number of graphs with minimum degree at least two
    Khoeilar, Rana
    Karami, Hossein
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    DISCRETE APPLIED MATHEMATICS, 2019, 270 : 159 - 167
  • [10] Improved upper bound on the double Roman domination number of graphs
    Chen, Xue-gang
    Wu, Xiao-fei
    ARS COMBINATORIA, 2020, 153 : 245 - 259