Approximation of generalized offset surfaces by bicubic splines

被引:0
|
作者
R. Akhrif
A. Kouibia
M. Pasadas
机构
[1] University Abdemalek Essaidi,Faculty S.J.E.S.
[2] University of Granada,Department Applied Mathematics, Faculty of Sciences
来源
Journal of Mathematical Chemistry | 2020年 / 58卷
关键词
Approximation; Bicubic splines; Offset surfaces; 65D05; 65D07; 65D10; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
We present an approximation problem of surfaces of a generalized offset surface with offset variable distances and directions. Such approximating surface fits some given data points and minimizes a Sobolev’s semi-norm of order 3. The study of the new results, from a mathematical point of view, carefully establishing the proof of the convergence between the generalized offset surface and its approximating spline in an adequate parametric bicubic spline space. Moreover, the approximating spline function is computed and an estimation of the relative error is introduced. Finally, some numerical and graphic examples are shown in order to prove the useful and the effectiveness of our method.
引用
收藏
页码:647 / 662
页数:15
相关论文
共 50 条
  • [41] Bicubic Splines for Fast-Contracting Control Nets
    Karciauskas, Kestutis
    Lo, Kyle Shih-Huang
    Gunpinar, Erkan
    Peters, Jorg
    AXIOMS, 2024, 13 (06)
  • [42] BEST MEAN APPROXIMATION BY SPLINES SATISFYING GENERALIZED CONVEXITY CONSTRAINTS
    PENCE, DD
    JOURNAL OF APPROXIMATION THEORY, 1980, 28 (04) : 333 - 348
  • [43] Construction and approximation of surfaces by discrete PDE splines on a polygonal domain
    Pasadas, A.
    Rodriguez, M. L.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (01) : 205 - 218
  • [44] Generalizing bicubic splines for modeling and IGA with irregular layout
    Karciauskas, Kestutis
    Thien Nguyen
    Peters, Joerg
    COMPUTER-AIDED DESIGN, 2016, 70 : 23 - 35
  • [45] APPROXIMATION OF NON-DEGENERATE OFFSET SURFACES.
    Farouki, R.T.
    Computer Aided Geometric Design, 1986, 3 (01): : 15 - 43
  • [46] On the geometry of parametrized bicubic surfaces
    Galligo, A.
    Stillman, M.
    JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (1-2) : 136 - 158
  • [47] SMOOTHING OF BICUBIC PARAMETRIC SURFACES
    KJELLANDER, JAP
    COMPUTER-AIDED DESIGN, 1983, 15 (05) : 288 - 294
  • [48] APPROXIMATION OF A PARAMETRIC BICUBIC SURFACE.
    Dimsdale, B.
    IBM Technical Disclosure Bulletin, 1972, 15 (05): : 1651 - 1654
  • [49] Bicubic hierarchical B-splines: Dimensions, completeness, and bases
    Zeng, Chao
    Deng, Fang
    Deng, Jiansong
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 38 : 1 - 23
  • [50] Interpolation for space scattered data by bicubic polynomial natural splines
    Department of Scientific Computing and Computer Application, Sun Yat-sen University, Guangzhou 510275, China
    不详
    Zhongshan Daxue Xuebao, 2008, 5 (1-4):