Approximation of generalized offset surfaces by bicubic splines

被引:0
|
作者
R. Akhrif
A. Kouibia
M. Pasadas
机构
[1] University Abdemalek Essaidi,Faculty S.J.E.S.
[2] University of Granada,Department Applied Mathematics, Faculty of Sciences
来源
Journal of Mathematical Chemistry | 2020年 / 58卷
关键词
Approximation; Bicubic splines; Offset surfaces; 65D05; 65D07; 65D10; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
We present an approximation problem of surfaces of a generalized offset surface with offset variable distances and directions. Such approximating surface fits some given data points and minimizes a Sobolev’s semi-norm of order 3. The study of the new results, from a mathematical point of view, carefully establishing the proof of the convergence between the generalized offset surface and its approximating spline in an adequate parametric bicubic spline space. Moreover, the approximating spline function is computed and an estimation of the relative error is introduced. Finally, some numerical and graphic examples are shown in order to prove the useful and the effectiveness of our method.
引用
收藏
页码:647 / 662
页数:15
相关论文
共 50 条
  • [11] IMPLEMENTING BICUBIC SPLINES
    LAUZZANA, RG
    PENROSE, DEM
    DR DOBBS JOURNAL, 1990, 15 (08): : 48 - &
  • [12] OFFSET APPROXIMATION OF UNIFORM B-SPLINES
    PHAM, B
    COMPUTER-AIDED DESIGN, 1988, 20 (08) : 471 - 474
  • [13] Approximation of fuzzy functions by fuzzy interpolating bicubic splines: 2018 CMMSE conference
    Gonzalez, P.
    Idais, H.
    Pasadas, M.
    Yasin, M.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (05) : 1252 - 1267
  • [14] 3D fuzzy data approximation by fuzzy smoothing bicubic splines
    Gonzalez, P.
    Idais, H.
    Pasadas, M.
    Yasin, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 164 : 94 - 102
  • [15] Approximation of fuzzy functions by fuzzy interpolating bicubic splines: 2018 CMMSE conference
    P. González
    H. Idais
    M. Pasadas
    M. Yasin
    Journal of Mathematical Chemistry, 2019, 57 : 1252 - 1267
  • [16] Bicubic splines and biquartic polynomials
    Mino, Lukas
    Szabo, Imrich
    Torok, Csaba
    OPEN COMPUTER SCIENCE, 2016, 6 (01): : 1 - 7
  • [17] Generalized Offset Surfaces of Cylindrical Surfaces
    Georgiev, Georgi Hristov
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'16), 2016, 1789
  • [18] Approximation of surfaces by modified Helmholtz splines
    Kouibia, A.
    Pasadas, M.
    Reyah, L.
    Akhrif, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 350 : 262 - 273
  • [19] AN OFFSET SPLINE APPROXIMATION FOR PLANE CUBIC-SPLINES
    KLASS, R
    COMPUTER-AIDED DESIGN, 1983, 15 (05) : 297 - 299
  • [20] Generalized Offset Surfaces to a Pseudosphere
    Georgiev, Georgi Hristov
    PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172