Approximation of generalized offset surfaces by bicubic splines

被引:0
|
作者
R. Akhrif
A. Kouibia
M. Pasadas
机构
[1] University Abdemalek Essaidi,Faculty S.J.E.S.
[2] University of Granada,Department Applied Mathematics, Faculty of Sciences
来源
Journal of Mathematical Chemistry | 2020年 / 58卷
关键词
Approximation; Bicubic splines; Offset surfaces; 65D05; 65D07; 65D10; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
We present an approximation problem of surfaces of a generalized offset surface with offset variable distances and directions. Such approximating surface fits some given data points and minimizes a Sobolev’s semi-norm of order 3. The study of the new results, from a mathematical point of view, carefully establishing the proof of the convergence between the generalized offset surface and its approximating spline in an adequate parametric bicubic spline space. Moreover, the approximating spline function is computed and an estimation of the relative error is introduced. Finally, some numerical and graphic examples are shown in order to prove the useful and the effectiveness of our method.
引用
收藏
页码:647 / 662
页数:15
相关论文
共 50 条
  • [1] Approximation of generalized offset surfaces by bicubic splines
    Akhrif, R.
    Kouibia, A.
    Pasadas, M.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (03) : 647 - 662
  • [2] Approximation of surfaces by fairness bicubic splines
    Kouibia, A
    Pasadas, M
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 20 (1-3) : 87 - 103
  • [3] Approximation of Surfaces by Fairness Bicubic Splines
    A. Kouibia
    M. Pasadas
    Advances in Computational Mathematics, 2004, 20 : 87 - 103
  • [4] THE SPECTRAL APPROXIMATION OF BICUBIC SPLINES ON THE SPHERE
    DIERCKX, P
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (02): : 611 - 623
  • [5] Optimal Approximation of Biquartic Polynomials by Bicubic Splines
    Kacala, Viliam
    Torok, Csaba
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2017 (MMCP 2017), 2018, 173
  • [6] IMAGE APPROXIMATION BY VARIABLE KNOT BICUBIC SPLINES
    MCCAUGHEY, DG
    ANDREWS, HC
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1981, 3 (03) : 299 - 310
  • [7] An approximation problem of noisy data by cubic and bicubic splines
    Kouibia, Abdelouahed
    Pasadas, Miguel
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (09) : 4135 - 4145
  • [8] Optimization of the parameters of surfaces by interpolating variational bicubic splines
    Kouibia, A.
    Pasadas, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 102 : 76 - 89
  • [9] Faired spline approximation of offset surface of bicubic surface
    Jiang, Dawei
    Peng, Guohua
    Fu, Hui
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 1993, 11 (03): : 371 - 374
  • [10] APPROXIMATION BY GENERALIZED SPLINES
    NURNBERGER, G
    SCHUMAKER, LL
    SOMMER, M
    STRAUSS, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 108 (02) : 466 - 494