Small order asymptotics for nonlinear fractional problems

被引:0
|
作者
Víctor Hernández Santamaría
Alberto Saldaña
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
关键词
35B40; 35S15; 35J60; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
We study the limiting behavior of solutions to boundary value nonlinear problems involving the fractional Laplacian of order 2s when the parameter s tends to zero. In particular, we show that least-energy solutions converge (up to a subsequence) to a nontrivial nonnegative least-energy solution of a limiting problem in terms of the logarithmic Laplacian, i.e. the pseudodifferential operator with Fourier symbol ln(|ξ|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln (|\xi |^2)$$\end{document}. These results are motivated by some applications of nonlocal models where a small value for the parameter s yields the optimal choice. Our approach is based on variational methods, uniform energy-derived estimates, and the use of a new logarithmic-type Sobolev inequality.
引用
收藏
相关论文
共 50 条
  • [41] A Convergent Algorithm for Solving Higher-Order Nonlinear Fractional Boundary Value Problems
    Qasem M. Al-Mdallal
    Mohamed A. Hajji
    Fractional Calculus and Applied Analysis, 2015, 18 : 1423 - 1440
  • [42] On spectral asymptotics for nonlinear Sturm-Liouville problems
    Shibata, T
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (03) : 874 - 890
  • [43] Positive Solutions for Fractional-order Nonlinear Boundary Value Problems on Infinite Interval
    Karaca, Ilkay Yaslan
    Oz, Dondu
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 317 - 335
  • [44] On the Solution of Fractional Order Nonlinear Boundary Value Problems By Using Differential Transformation Method
    Hussin, Che Haziqah Che
    Kilicman, Adem
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 4 (02): : 174 - 185
  • [45] Existence and uniqueness of solutions of nonlinear fractional order problems via a fixed point theorem
    Ahmadi, Zahra
    Lashkaripour, Rahmatollah
    Baghani, Hamid
    Heidarkhani, Shapour
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (06) : 797 - 807
  • [46] Quasilinearization technique for solving nonlinear Riemann-Liouville fractional-order problems
    Su, Guangwang
    Lu, Liang
    Tang, Bo
    Liu, Zhenhai
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 378
  • [47] A CONVERGENT ALGORITHM FOR SOLVING HIGHER-ORDER NONLINEAR FRACTIONAL BOUNDARY VALUE PROBLEMS
    Al-Mdallal, Qasem M.
    Hajji, Mohamed A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (06) : 1423 - 1440
  • [48] ON NONLOCAL INTEGRAL BOUNDARY VALUE PROBLEMS FOR IMPULSIVE NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Wang, Guotao
    Ahmad, Bashir
    Zhang, Lihong
    FIXED POINT THEORY, 2014, 15 (01): : 265 - 284
  • [49] SPECTRAL ASYMPTOTICS FOR NONLINEAR STURM-LIOUVILLE PROBLEMS
    SHIBATA, T
    FORUM MATHEMATICUM, 1995, 7 (02) : 207 - 224
  • [50] Spectral asymptotics for nonlinear multiparameter problems with indefinite nonlinearities
    Shibata, T
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1999, 49 (02) : 317 - 340