Small order asymptotics for nonlinear fractional problems

被引:0
|
作者
Víctor Hernández Santamaría
Alberto Saldaña
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
关键词
35B40; 35S15; 35J60; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
We study the limiting behavior of solutions to boundary value nonlinear problems involving the fractional Laplacian of order 2s when the parameter s tends to zero. In particular, we show that least-energy solutions converge (up to a subsequence) to a nontrivial nonnegative least-energy solution of a limiting problem in terms of the logarithmic Laplacian, i.e. the pseudodifferential operator with Fourier symbol ln(|ξ|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln (|\xi |^2)$$\end{document}. These results are motivated by some applications of nonlocal models where a small value for the parameter s yields the optimal choice. Our approach is based on variational methods, uniform energy-derived estimates, and the use of a new logarithmic-type Sobolev inequality.
引用
收藏
相关论文
共 50 条