Small order asymptotics for nonlinear fractional problems

被引:0
|
作者
Víctor Hernández Santamaría
Alberto Saldaña
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
关键词
35B40; 35S15; 35J60; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
We study the limiting behavior of solutions to boundary value nonlinear problems involving the fractional Laplacian of order 2s when the parameter s tends to zero. In particular, we show that least-energy solutions converge (up to a subsequence) to a nontrivial nonnegative least-energy solution of a limiting problem in terms of the logarithmic Laplacian, i.e. the pseudodifferential operator with Fourier symbol ln(|ξ|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln (|\xi |^2)$$\end{document}. These results are motivated by some applications of nonlocal models where a small value for the parameter s yields the optimal choice. Our approach is based on variational methods, uniform energy-derived estimates, and the use of a new logarithmic-type Sobolev inequality.
引用
收藏
相关论文
共 50 条
  • [1] Small order asymptotics for nonlinear fractional problems
    Hernandez Santamaria, Victor
    Saldana, Alberto
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [2] Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian
    Pierre Aime Feulefack
    Sven Jarohs
    Tobias Weth
    Journal of Fourier Analysis and Applications, 2022, 28
  • [3] Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian
    Feulefack, Pierre Aime
    Jarohs, Sven
    Weth, Tobias
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (02)
  • [4] Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrodinger Equations
    Hayashi, Nakao
    Naumkin, Pavel I.
    ANNALES HENRI POINCARE, 2017, 18 (03): : 1025 - 1054
  • [5] Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrödinger Equations
    Nakao Hayashi
    Pavel I. Naumkin
    Annales Henri Poincaré, 2017, 18 : 1025 - 1054
  • [6] Nonlinear higher order fractional terminal value problems
    Baleanu, Dumitru
    Shiri, Babak
    AIMS MATHEMATICS, 2022, 7 (05): : 7489 - 7506
  • [7] BASIC RESULTS ON NONLINEAR EIGENVALUE PROBLEMS OF FRACTIONAL ORDER
    Al-Refai, Mohammed
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [8] Asymptotics for fractional nonlinear heat equations
    Hayashi, N
    Kaikina, EI
    Naumkin, PI
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 663 - 688
  • [9] The number of solutions for second-order boundary value problems with nonlinear asymptotics
    Klokov, YA
    Sadyrbaev, FZ
    DIFFERENTIAL EQUATIONS, 1998, 34 (04) : 469 - 477
  • [10] Nonlocal Cauchy problems for fractional order nonlinear differential systems
    Wang, JinRong
    Li, Xuezhu
    Zhou, Yong
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1399 - 1413