Predicting tumor cell line response to drug pairs with deep learning

被引:0
|
作者
Fangfang Xia
Maulik Shukla
Thomas Brettin
Cristina Garcia-Cardona
Judith Cohn
Jonathan E. Allen
Sergei Maslov
Susan L. Holbeck
James H. Doroshow
Yvonne A. Evrard
Eric A. Stahlberg
Rick L. Stevens
机构
[1] Computing,
[2] Environment and Life Sciences,undefined
[3] Argonne National Laboratory,undefined
[4] Computation Institute,undefined
[5] The University of Chicago,undefined
[6] Center for Nonlinear Studies,undefined
[7] Los Alamos National Laboratory,undefined
[8] Computer Science,undefined
[9] Los Alamos National Laboratory,undefined
[10] Computation Directorate,undefined
[11] Lawrence Livermore National Laboratory,undefined
[12] Department of Bioengineering and Carl R. Woese Institute for Genomic Biology,undefined
[13] University of Illinois at Urbana-Champaign,undefined
[14] Developmental Therapeutics Branch,undefined
[15] National Cancer Institute,undefined
[16] Data Science and Information Technology Program,undefined
[17] Frederick National Laboratory for Cancer Research,undefined
来源
关键词
Machine learning; Deep learning; Combination therapy; in silico drug screening;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Predicting adverse drug reactions through interpretable deep learning framework
    Sanjoy Dey
    Heng Luo
    Achille Fokoue
    Jianying Hu
    Ping Zhang
    BMC Bioinformatics, 19
  • [32] Predicting response to pembrolizumab in non-small cell lung cancer, by analyzing the spatial arrangement of tumor infiltrating lymphocytes using deep learning.
    Ofek, Efrat
    Bar, Jair
    Zer, Alona
    Urban, Damien
    Mayer, Chen
    Sade, Chen
    Zelichov, Ori
    Groisman, Alon
    Laniado, Avi
    Gabay, Yuval
    Polychenko, Willy
    Gluskin, Roman
    Achtenberg, Albert
    Feinmesser, Meora
    Barshack, Iris
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [33] IMAGE-BASED DRUG RESPONSE PROFILING FROM PEDIATRIC TUMOR CELL SPHEROIDS USING PATIENT-BY-PATIENT DEEP TRANSFER LEARNING
    Berker, Yannick
    ElHarouni, Dina
    Peterziel, Heike
    Oehme, Ina
    Schlesner, Matthias
    Witt, Olaf
    Oppermann, Sina
    NEURO-ONCOLOGY, 2021, 23 : 36 - 36
  • [34] Deep Learning Model for Predicting Immunotherapy Response in Advanced Non-Small Cell Lung Cancer
    Rakaee, Mehrdad
    Tafavvoghi, Masoud
    Ricciuti, Biagio
    Alessi, Joao V.
    Cortellini, Alessio
    Citarella, Fabrizio
    Nibid, Lorenzo
    Perrone, Giuseppe
    Adib, Elio
    Fulgenzi, Claudia A. M.
    Hidalgo Filho, Cassio Murilo
    Di Federico, Alessandro
    Jabar, Falah
    Hashemi, Sayed
    Houda, Ilias
    Richardsen, Elin
    Busund, Lill-Tove Rasmussen
    Donnem, Tom
    Bahce, Idris
    Pinato, David J.
    Helland, Aslaug
    Sholl, Lynette M.
    Awad, Mark M.
    Kwiatkowski, David J.
    JAMA ONCOLOGY, 2025, 11 (02) : 109 - 118
  • [35] Circulating Tumor Cell Identification Based on Deep Learning
    Guo, Zhifeng
    Lin, Xiaoxi
    Hui, Yan
    Wang, Jingchun
    Zhang, Qiuli
    Kong, Fanlong
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [36] Predicting drug response
    Stephenson, J
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2006, 295 (19): : 2240 - 2240
  • [37] Predicting drug–drug interactions based on multi-view and multichannel attention deep learning
    Liyu Huang
    Qingfeng Chen
    Wei Lan
    Health Information Science and Systems, 11
  • [38] CNN-DDI: A novel deep learning method for predicting drug-drug interactions
    Zhang, Chengcheng
    Zang, Tianyi
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1708 - 1713
  • [39] SynPathy: Predicting Drug Synergy through Drug-Associated Pathways Using Deep Learning
    Tang, Yi-Ching
    Gottlieb, Assaf
    MOLECULAR CANCER RESEARCH, 2022, 20 (05) : 762 - 769
  • [40] DeepCoVDR: deep transfer learning with graph transformer and cross-attention for predicting COVID-19 drug response
    Huang, Zhijian
    Zhang, Pan
    Deng, Lei
    BIOINFORMATICS, 2023, 39 : I475 - I483