Predicting tumor cell line response to drug pairs with deep learning

被引:0
|
作者
Fangfang Xia
Maulik Shukla
Thomas Brettin
Cristina Garcia-Cardona
Judith Cohn
Jonathan E. Allen
Sergei Maslov
Susan L. Holbeck
James H. Doroshow
Yvonne A. Evrard
Eric A. Stahlberg
Rick L. Stevens
机构
[1] Computing,
[2] Environment and Life Sciences,undefined
[3] Argonne National Laboratory,undefined
[4] Computation Institute,undefined
[5] The University of Chicago,undefined
[6] Center for Nonlinear Studies,undefined
[7] Los Alamos National Laboratory,undefined
[8] Computer Science,undefined
[9] Los Alamos National Laboratory,undefined
[10] Computation Directorate,undefined
[11] Lawrence Livermore National Laboratory,undefined
[12] Department of Bioengineering and Carl R. Woese Institute for Genomic Biology,undefined
[13] University of Illinois at Urbana-Champaign,undefined
[14] Developmental Therapeutics Branch,undefined
[15] National Cancer Institute,undefined
[16] Data Science and Information Technology Program,undefined
[17] Frederick National Laboratory for Cancer Research,undefined
来源
关键词
Machine learning; Deep learning; Combination therapy; in silico drug screening;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Predicting cancer prognosis and drug response from the tumor microbiome
    Hermida, Leandro C.
    Gertz, E. Michael
    Ruppin, Eytan
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [22] DeepDR: a deep learning library for drug response prediction
    Jiang, Zhengxiang
    Li, Pengyong
    BIOINFORMATICS, 2024, 40 (12)
  • [23] A deep-learning model for predicting tyrosine kinase inhibitor response from histology in gastrointestinal stromal tumor
    Kong, Xue
    Shi, Jun
    Sun, Dongdong
    Cheng, Lanqing
    Wu, Can
    Jiang, Zhiguo
    Zheng, Yushan
    Wang, Wei
    Wu, Haibo
    JOURNAL OF PATHOLOGY, 2025, 265 (04): : 462 - 471
  • [24] Predicting metabolite response to dietary intervention using deep learning
    Wang, Tong
    Holscher, Hannah D.
    Maslov, Sergei
    Hu, Frank B.
    Weiss, Scott T.
    Liu, Yang-Yu
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [25] Virtual screening with deep learning using cancer cell line dose-response data
    Clyde, Austin
    Ramanathan, Arvind
    Stevens, Rick
    CLINICAL CANCER RESEARCH, 2020, 26 (12) : 34 - 35
  • [26] Imaging-Based Deep Learning for Predicting Desmoid Tumor Progression
    Fares, Rabih
    Atlan, Lilian D.
    Druckmann, Ido
    Factor, Shai
    Gortzak, Yair
    Segal, Ortal
    Artzi, Moran
    Sternheim, Amir
    JOURNAL OF IMAGING, 2024, 10 (05)
  • [27] Predicting Drug-target Interaction via Wide and Deep Learning
    Du, Yingyi
    Wang, Jihong
    Wang, Xiaodan
    Chen, Jiyun
    Chang, Huiyou
    PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018), 2018, : 128 - 132
  • [28] Machine learning methods for predicting tumor response in lung cancer
    El Naqa, Issam
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 2 (02) : 173 - 181
  • [29] Predicting adverse drug reactions through interpretable deep learning framework
    Dey, Sanjoy
    Luo, Heng
    Fokoue, Achille
    Hu, Jianying
    Zhang, Ping
    BMC BIOINFORMATICS, 2018, 19
  • [30] DeepSynergy: predicting anti-cancer drug synergy with Deep Learning
    Preuer, Kristina
    Lewis, Richard P. I.
    Hochreiter, Sepp
    Bender, Andreas
    Bulusu, Krishna C.
    Klambauer, Guenter
    BIOINFORMATICS, 2018, 34 (09) : 1538 - 1546