O(N) Random Tensor Models

被引:0
|
作者
Sylvain Carrozza
Adrian Tanasa
机构
[1] Univ. Bordeaux,
[2] LaBRI,undefined
[3] UMR 5800,undefined
[4] H. Hulubei National Institute for Physics and Nuclear Engineering,undefined
[5] IUF,undefined
来源
关键词
tensor models; colored graphs; analytic combinatorics.; 83C27; 81T18; 05C30;
D O I
暂无
中图分类号
学科分类号
摘要
We define in this paper a class of three-index tensor models, endowed with O(N)⊗3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(N)^{\otimes 3}}$$\end{document} invariance (N being the size of the tensor). This allows to generate, via the usual QFT perturbative expansion, a class of Feynman tensor graphs which is strictly larger than the class of Feynman graphs of both the multi-orientable model (and hence of the colored model) and the U(N) invariant models. We first exhibit the existence of a large N expansion for such a model with general interactions. We then focus on the quartic model and we identify the leading and next-to-leading order (NLO) graphs of the large N expansion. Finally, we prove the existence of a critical regime and we compute the critical exponents, both at leading order and at NLO. This is achieved through the use of various analytic combinatorics techniques.
引用
收藏
页码:1531 / 1559
页数:28
相关论文
共 50 条
  • [31] Large N limit of irreducible tensor models: O(N) rank-3 tensors with mixed permutation symmetry
    Carrozza, Sylvain
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [32] Large N limit of irreducible tensor models: O(N) rank-3 tensors with mixed permutation symmetry
    Sylvain Carrozza
    Journal of High Energy Physics, 2018
  • [33] Two-dimensional O(n) Models with Defects of "Random Local Anisotropy" Type
    Berzin, A. A.
    Morosov, A. I.
    Sigov, A. S.
    PHYSICS OF THE SOLID STATE, 2020, 62 (04) : 696 - 699
  • [34] Two-dimensional O(n) Models with Defects of “Random Local Anisotropy” Type
    A. A. Berzin
    A. I. Morosov
    A. S. Sigov
    Physics of the Solid State, 2020, 62 : 696 - 699
  • [35] Tensor models from the viewpoint of matrix models: the cases of loop models on random surfaces and of the Gaussian distribution
    Bonzom, Valentin
    Combes, Frederic
    ANNALES DE L INSTITUT HENRI POINCARE D, 2015, 2 (01): : 1 - 47
  • [36] Long-range correlated random field and random anisotropy O(N) models:: A functional renormalization group study
    Fedorenko, Andrei A.
    Kuehnel, Florian
    PHYSICAL REVIEW B, 2007, 75 (17):
  • [37] Lower Bounds for the Convergence of Tensor Power Iteration on Random Overcomplete Models
    Wu, Yuchen
    Zhou, Kangjie
    THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195, 2023, 195
  • [38] Reliability of the local truncations for the random tensor models renormalization group flow
    Lahoche, Vincent
    Samary, Dine Ousmane
    PHYSICAL REVIEW D, 2020, 102 (05):
  • [39] TENSOR MODELS AND HIERARCHY OF n-ARY ALGEBRAS
    Sasakura, Naoki
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (19): : 3249 - 3258
  • [40] On large N limit of symmetric traceless tensor models
    Klebanov, Igor R.
    Tarnopolsky, Grigory
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10):