O(N) Random Tensor Models

被引:0
|
作者
Sylvain Carrozza
Adrian Tanasa
机构
[1] Univ. Bordeaux,
[2] LaBRI,undefined
[3] UMR 5800,undefined
[4] H. Hulubei National Institute for Physics and Nuclear Engineering,undefined
[5] IUF,undefined
来源
Letters in Mathematical Physics | 2016年 / 106卷
关键词
tensor models; colored graphs; analytic combinatorics.; 83C27; 81T18; 05C30;
D O I
暂无
中图分类号
学科分类号
摘要
We define in this paper a class of three-index tensor models, endowed with O(N)⊗3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(N)^{\otimes 3}}$$\end{document} invariance (N being the size of the tensor). This allows to generate, via the usual QFT perturbative expansion, a class of Feynman tensor graphs which is strictly larger than the class of Feynman graphs of both the multi-orientable model (and hence of the colored model) and the U(N) invariant models. We first exhibit the existence of a large N expansion for such a model with general interactions. We then focus on the quartic model and we identify the leading and next-to-leading order (NLO) graphs of the large N expansion. Finally, we prove the existence of a critical regime and we compute the critical exponents, both at leading order and at NLO. This is achieved through the use of various analytic combinatorics techniques.
引用
收藏
页码:1531 / 1559
页数:28
相关论文
共 50 条
  • [21] On the counting of O(N) tensor invariants
    Avohou, Remi C.
    Ben Geloun, Joseph
    Dub, Nicolas
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 24 (04) : 821 - 878
  • [22] Two-loop functional renormalization group of the random field and random anisotropy O(N) models
    Tissier, Matthieu
    Tarjus, Gilles
    PHYSICAL REVIEW B, 2006, 74 (21):
  • [23] Representations of O(N) Spin Models by Self-Avoiding Random Walks
    K. R. Ito
    T. Kugo
    H. Tamura
    Communications in Mathematical Physics, 1997, 183 : 723 - 737
  • [24] Representations of O(N) spin models by self-avoiding random walks
    Ito, KR
    Kugo, T
    Tamura, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (03) : 723 - 737
  • [25] Spectra of operators in large N tensor models
    Bulycheva, Ksenia
    Klebanov, Igor R.
    Milekhin, Alexey
    Tarnopolsky, Grigory
    PHYSICAL REVIEW D, 2018, 97 (02):
  • [26] The 1/N Expansion of Colored Tensor Models
    Razvan Gurau
    Annales Henri Poincaré, 2011, 12 : 829 - 847
  • [27] Duality of orthogonal and symplectic random tensor models: general invariants
    Keppler, Hannes
    Mueller, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (04)
  • [28] The 1/N Expansion of Colored Tensor Models
    Gurau, Razvan
    ANNALES HENRI POINCARE, 2011, 12 (05): : 829 - 847
  • [29] Bosonic tensor models at large N and small ε
    Giombi, Simone
    Klebanov, Igor R.
    Tarnopolsky, Grigory
    PHYSICAL REVIEW D, 2017, 96 (10)
  • [30] Duality of orthogonal and symplectic random tensor models: general invariants
    Hannes Keppler
    Thomas Muller
    Letters in Mathematical Physics, 113