O(N) Random Tensor Models

被引:0
|
作者
Sylvain Carrozza
Adrian Tanasa
机构
[1] Univ. Bordeaux,
[2] LaBRI,undefined
[3] UMR 5800,undefined
[4] H. Hulubei National Institute for Physics and Nuclear Engineering,undefined
[5] IUF,undefined
来源
关键词
tensor models; colored graphs; analytic combinatorics.; 83C27; 81T18; 05C30;
D O I
暂无
中图分类号
学科分类号
摘要
We define in this paper a class of three-index tensor models, endowed with O(N)⊗3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(N)^{\otimes 3}}$$\end{document} invariance (N being the size of the tensor). This allows to generate, via the usual QFT perturbative expansion, a class of Feynman tensor graphs which is strictly larger than the class of Feynman graphs of both the multi-orientable model (and hence of the colored model) and the U(N) invariant models. We first exhibit the existence of a large N expansion for such a model with general interactions. We then focus on the quartic model and we identify the leading and next-to-leading order (NLO) graphs of the large N expansion. Finally, we prove the existence of a critical regime and we compute the critical exponents, both at leading order and at NLO. This is achieved through the use of various analytic combinatorics techniques.
引用
收藏
页码:1531 / 1559
页数:28
相关论文
共 50 条
  • [1] O(N) Random Tensor Models
    Carrozza, Sylvain
    Tanasa, Adrian
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (11) : 1531 - 1559
  • [2] Duality of O(N) and Sp(N) random tensor models: tensors with symmetries
    Keppler, H.
    Krajewski, T.
    Muller, T.
    Tanasa, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (49)
  • [3] Random tensor models in the large N limit: Uncoloring the colored tensor models
    Bonzom, Valentin
    Gurau, Razvan
    Rivasseau, Vincent
    PHYSICAL REVIEW D, 2012, 85 (08):
  • [4] A REVIEW OF THE 1/N EXPANSION IN RANDOM TENSOR MODELS
    Gurau, R.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 651 - 662
  • [5] New 1/N expansions in random tensor models
    Bonzom, Valentin
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (06):
  • [6] New 1/N expansions in random tensor models
    Valentin Bonzom
    Journal of High Energy Physics, 2013
  • [7] COMBINATORICS OF RANDOM TENSOR MODELS
    Tanasa, Adrian
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2012, 13 (01): : 27 - 31
  • [8] The 1/N Expansion of Multi-Orientable Random Tensor Models
    Stéphane Dartois
    Vincent Rivasseau
    Adrian Tanasa
    Annales Henri Poincaré, 2014, 15 : 965 - 984
  • [9] The 1/N Expansion of Multi-Orientable Random Tensor Models
    Dartois, Stephane
    Rivasseau, Vincent
    Tanasa, Adrian
    ANNALES HENRI POINCARE, 2014, 15 (05): : 965 - 984
  • [10] Notes on melonic O(N)q−1 tensor models
    Sayantan Choudhury
    Anshuman Dey
    Indranil Halder
    Lavneet Janagal
    Shiraz Minwalla
    Rohan R. Poojary
    Journal of High Energy Physics, 2018