Blockers for the Stability Number and the Chromatic Number

被引:0
|
作者
C. Bazgan
C. Bentz
C. Picouleau
B. Ries
机构
[1] Université Paris-Dauphine,PSL, LAMSADE, CNRS UMR 7243
[2] Institut Universitaire de France,undefined
[3] CEDRIC-CNAM,undefined
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Blocker; Chromatic number; Stability number; Bipartitegraph; Split graph; Threshold graph;
D O I
暂无
中图分类号
学科分类号
摘要
Given an undirected graph G = (V, E) and two positive integers k and d, we are interested in finding a set of edges (resp. non-edges) of size at most k to delete (resp. to add) in such a way that the chromatic number (resp. stability number) in the resulting graph will decrease by at least d compared to the original graph. We investigate these two problems in various classes of graphs (split graphs, threshold graphs, bipartite graphs and their complements) and determine their computational complexity. In some of the polynomial-time solvable cases, we also give a structural description of a solution.
引用
收藏
页码:73 / 90
页数:17
相关论文
共 50 条
  • [1] Blockers for the Stability Number and the Chromatic Number
    Bazgan, C.
    Bentz, C.
    Picouleau, C.
    Ries, B.
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 73 - 90
  • [2] STABILITY NUMBER AND CHROMATIC NUMBER OF TOLERANCE GRAPHS
    NARASIMHAN, G
    MANBER, R
    DISCRETE APPLIED MATHEMATICS, 1992, 36 (01) : 47 - 56
  • [3] On the total chromatic edge stability number and the total chromatic subdivision number of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 1 - 8
  • [4] The Adaptable Chromatic Number and the Chromatic Number
    Molloy, Michael
    JOURNAL OF GRAPH THEORY, 2017, 84 (01) : 53 - 56
  • [5] On the Chromatic Edge Stability Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Movarraei, Nazanin
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1539 - 1551
  • [6] On the chromatic vertex stability number of graphs
    Akbari, Saieed
    Beikmohammadi, Arash
    Klavzar, Sandi
    Movarraei, Nazanin
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102
  • [7] On the Chromatic Edge Stability Number of Graphs
    Arnfried Kemnitz
    Massimiliano Marangio
    Nazanin Movarraei
    Graphs and Combinatorics, 2018, 34 : 1539 - 1551
  • [8] On the edge chromatic vertex stability number of graphs
    Alikhani, Saeid
    Piri, Mohammad R.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 29 - 34
  • [9] On the fractional chromatic number, the chromatic number, and graph products
    Klavzar, S
    Yeh, HG
    DISCRETE MATHEMATICS, 2002, 247 (1-3) : 235 - 242
  • [10] Packing chromatic number versus chromatic and clique number
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    Wash, Kirsti
    AEQUATIONES MATHEMATICAE, 2018, 92 (03) : 497 - 513