Packing chromatic number versus chromatic and clique number

被引:11
|
作者
Bresar, Bostjan [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Rall, Douglas F. [4 ]
Wash, Kirsti [5 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Furman Univ, Dept Math, Greenville, SC 29613 USA
[5] Western New England Univ, Dept Math, Springfield, MA USA
关键词
Packing chromatic number; Chromatic number; Clique number; Independence number; Mycielskian; HEXAGONAL LATTICE; DISTANCE GRAPHS; COLORINGS; PRODUCT;
D O I
10.1007/s00010-017-0520-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The packing chromatic number of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets , , where each is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that , , and . If so, we say that (a, b, c) is realizable. It is proved that implies , and that triples and are not realizable as soon as . Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound chi(rho)(G) on in terms of Delta(G) and alpha(G) is also proved.
引用
收藏
页码:497 / 513
页数:17
相关论文
共 50 条
  • [1] Packing chromatic number versus chromatic and clique number
    Boštjan Brešar
    Sandi Klavžar
    Douglas F. Rall
    Kirsti Wash
    Aequationes mathematicae, 2018, 92 : 497 - 513
  • [2] CHROMATIC NUMBER VERSUS COCHROMATIC NUMBER IN GRAPHS WITH BOUNDED CLIQUE NUMBER
    ERDOS, P
    GIMBEL, J
    STRAIGHT, HJ
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (03) : 235 - 240
  • [3] On Graph Having Clique Number α,Chromatic Number α+1
    Xu Baogang(Dept.Math.Shandong University
    数学研究与评论, 1991, (03) : 400 - 400
  • [4] Tight Bounds on the Clique Chromatic Number
    Joret, Gwenael
    Micek, Piotr
    Reed, Bruce
    Smid, Michiel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [5] The packing chromatic number of hypercubes
    Torres, Pablo
    Valencia-Pabon, Mario
    DISCRETE APPLIED MATHEMATICS, 2015, 190 : 127 - 140
  • [6] The list chromatic number of graphs with small clique number
    Molloy, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 264 - 284
  • [7] Minimum Clique Number, Chromatic Number, and Ramsey Numbers
    Liu, Gaku
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [8] Fractional chromatic number and circular chromatic number for distance graphs with large clique size
    Liu, DDF
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2004, 47 (02) : 129 - 146
  • [9] Hardness of computing clique number and chromatic number for Cayley graphs
    Godsil, Chris
    Rooney, Brendan
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 62 : 147 - 166
  • [10] Forcing clique immersions through chromatic number
    Gauthier, Gregory
    Le, Tien-Nam
    Wollan, Paul
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 81 : 98 - 118