Packing chromatic number versus chromatic and clique number

被引:11
|
作者
Bresar, Bostjan [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Rall, Douglas F. [4 ]
Wash, Kirsti [5 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Furman Univ, Dept Math, Greenville, SC 29613 USA
[5] Western New England Univ, Dept Math, Springfield, MA USA
关键词
Packing chromatic number; Chromatic number; Clique number; Independence number; Mycielskian; HEXAGONAL LATTICE; DISTANCE GRAPHS; COLORINGS; PRODUCT;
D O I
10.1007/s00010-017-0520-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The packing chromatic number of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets , , where each is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that , , and . If so, we say that (a, b, c) is realizable. It is proved that implies , and that triples and are not realizable as soon as . Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound chi(rho)(G) on in terms of Delta(G) and alpha(G) is also proved.
引用
收藏
页码:497 / 513
页数:17
相关论文
共 50 条
  • [21] Relationships between the clique number, chromatic number, and the degree for some graphs
    Berlov S.L.
    Automatic Control and Computer Sciences, 2010, 44 (07) : 407 - 414
  • [22] Chromatic number and clique number of subgraphs of regular graph of matrix algebras
    Akbari, S.
    Aryapoor, M.
    Jamaali, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2419 - 2424
  • [23] New Construction of Graphs with High Chromatic Number and Small Clique Number
    Hamid Reza Daneshpajouh
    Discrete & Computational Geometry, 2018, 59 : 238 - 245
  • [24] Towards optimal lower bounds for clique and chromatic number
    Engebretsen, L
    Holmerin, J
    THEORETICAL COMPUTER SCIENCE, 2003, 299 (1-3) : 537 - 584
  • [25] The packing chromatic number of infinite product graphs
    Fiala, Jiri
    Klavzar, Sandi
    Lidicky, Bernard
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1101 - 1113
  • [26] Packing Chromatic Number of Subdivisions of Cubic Graphs
    Balogh, Jozsef
    Kostochka, Alexandr
    Liu, Xujun
    GRAPHS AND COMBINATORICS, 2019, 35 (02) : 513 - 537
  • [27] On the packing chromatic number of square and hexagonal lattice
    Korze, Danilo
    Vesel, Aleksander
    ARS MATHEMATICA CONTEMPORANEA, 2014, 7 (01) : 13 - 22
  • [28] Packing Chromatic Number of Subdivisions of Cubic Graphs
    József Balogh
    Alexandr Kostochka
    Xujun Liu
    Graphs and Combinatorics, 2019, 35 : 513 - 537
  • [29] THE S-PACKING CHROMATIC NUMBER OF A GRAPH
    Goddard, Wayne
    Xu, Honghai
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 795 - 806
  • [30] On the packing chromatic number of subcubic outerplanar graphs
    Gastineau, Nicolas
    Holub, Premysl
    Togni, Olivier
    DISCRETE APPLIED MATHEMATICS, 2019, 255 : 209 - 221