Stochastic regularization for transport equations

被引:0
|
作者
Jinlong Wei
Jinqiao Duan
Hongjun Gao
Guangying Lv
机构
[1] Zhongnan University of Economics and Law,School of Statistics and Mathematics
[2] Illinois Institute of Technology,Department of Applied Mathematics
[3] Southeast University,School of Mathematics
[4] Nanjing Normal University,Institute of Mathematics, School of Mathematical Science
[5] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
关键词
Stochastic transport equations; Stochastic strong solution; Uniqueness; Existence; Nonexistence; 60H15 (35A01 35L02 35R60);
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a stochastic transport equation driven by a multiplicative noise. For drift coefficients in Lq(0,T;Cbα(Rd))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q(0,T;{\mathcal {C}}^\alpha _b({\mathbb {R}}^d))$$\end{document} (α>2/q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >2/q$$\end{document}) and initial data in W1,r(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,r}({\mathbb {R}}^d)$$\end{document}, we show the existence and uniqueness of stochastic strong solutions. Opposite to the deterministic case where the same assumptions on drift coefficients and initial data induce nonexistence of strong solutions, we prove that a multiplicative stochastic perturbation of Brownian type is enough to render the equation well-posed. However, for α+1<2/q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha +1<2/q$$\end{document} with spatial dimension higher than one, we can choose suitable initial data and drift coefficients so that the stochastic strong solutions do not exist.
引用
收藏
页码:105 / 141
页数:36
相关论文
共 50 条
  • [41] Stochastic dynamic solution of nonlinear differential equations for transport phenomena
    Bargiel, M
    Tory, EM
    AICHE JOURNAL, 1996, 42 (03) : 889 - 891
  • [42] On the Well-Posedness of Stochastic Boussinesq Equations with Transport Noise
    Diego Alonso-Orán
    Aythami Bethencourt de León
    Journal of Nonlinear Science, 2020, 30 : 175 - 224
  • [43] On a class of stochastic partial differential equations related to turbulent transport
    Deck, T
    Potthoff, J
    PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (01) : 101 - 122
  • [44] Exact averaging of stochastic equations for transport in random velocity field
    Shvidler, M
    Karasaki, K
    TRANSPORT IN POROUS MEDIA, 2003, 50 (03) : 223 - 241
  • [45] A scaling limit for the stochastic mSQG equations with multiplicative transport noises
    Luo, Dejun
    Saal, Martin
    STOCHASTICS AND DYNAMICS, 2020, 20 (06)
  • [46] Initial-boundary value problem for stochastic transport equations
    Neves, Wladimir
    Olivera, Christian
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (03): : 674 - 701
  • [47] Initial-boundary value problem for stochastic transport equations
    Wladimir Neves
    Christian Olivera
    Stochastics and Partial Differential Equations: Analysis and Computations, 2021, 9 : 674 - 701
  • [48] On a class of stochastic partial differential equations related to turbulent transport
    T. Deck
    J. Potthoff
    Probability Theory and Related Fields, 1998, 111 : 101 - 122
  • [49] Exact Averaging of Stochastic Equations for Transport in Random Velocity Field
    Mark Shvidler
    Kenzi Karasaki
    Transport in Porous Media, 2003, 50 : 223 - 241
  • [50] On the Well-Posedness of Stochastic Boussinesq Equations with Transport Noise
    Alonso-Oran, Diego
    Bethencourt de Leon, Aythami
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (01) : 175 - 224