Stochastic regularization for transport equations

被引:0
|
作者
Jinlong Wei
Jinqiao Duan
Hongjun Gao
Guangying Lv
机构
[1] Zhongnan University of Economics and Law,School of Statistics and Mathematics
[2] Illinois Institute of Technology,Department of Applied Mathematics
[3] Southeast University,School of Mathematics
[4] Nanjing Normal University,Institute of Mathematics, School of Mathematical Science
[5] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
关键词
Stochastic transport equations; Stochastic strong solution; Uniqueness; Existence; Nonexistence; 60H15 (35A01 35L02 35R60);
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a stochastic transport equation driven by a multiplicative noise. For drift coefficients in Lq(0,T;Cbα(Rd))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q(0,T;{\mathcal {C}}^\alpha _b({\mathbb {R}}^d))$$\end{document} (α>2/q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >2/q$$\end{document}) and initial data in W1,r(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,r}({\mathbb {R}}^d)$$\end{document}, we show the existence and uniqueness of stochastic strong solutions. Opposite to the deterministic case where the same assumptions on drift coefficients and initial data induce nonexistence of strong solutions, we prove that a multiplicative stochastic perturbation of Brownian type is enough to render the equation well-posed. However, for α+1<2/q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha +1<2/q$$\end{document} with spatial dimension higher than one, we can choose suitable initial data and drift coefficients so that the stochastic strong solutions do not exist.
引用
收藏
页码:105 / 141
页数:36
相关论文
共 50 条
  • [31] Stochastic neutron transport equations for rod and plane geometries
    Sharp, WD
    Allen, EJ
    ANNALS OF NUCLEAR ENERGY, 2000, 27 (02) : 99 - 116
  • [32] On the convergence of stochastic transport equations to a deterministic parabolic one
    Galeati, Lucio
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2020, 8 (04): : 833 - 868
  • [33] The stochastic primitive equations with transport noise and turbulent pressure
    Agresti, Antonio
    Hieber, Matthias
    Hussein, Amru
    Saal, Martin
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (01): : 53 - 133
  • [34] Stochastic equations in the invariant imbedding formulation of particle transport
    Degweker, S. B.
    Pazsit, Imre
    ANNALS OF NUCLEAR ENERGY, 2009, 36 (08) : 1108 - 1119
  • [35] STOCHASTIC REGULARIZATION AND RENORMALIZATION
    EGORYAN, ES
    MANVELYAN, RP
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 68 (02) : 762 - 769
  • [36] STOCHASTIC REGULARIZATION OF FERMIONS
    KAULFUSS, UB
    MEISSNER, UG
    PHYSICAL REVIEW D, 1986, 33 (08): : 2416 - 2427
  • [37] STOCHASTIC QUANTIZATION AND REGULARIZATION
    BREIT, JD
    GUPTA, S
    ZAKS, A
    NUCLEAR PHYSICS B, 1984, 233 (01) : 61 - 87
  • [38] STOCHASTIC REGULARIZATION OF QED
    GAVELA, MB
    HUFFEL, H
    NUCLEAR PHYSICS B, 1986, 275 (04) : 721 - 733
  • [39] STOCHASTIC ANALYTIC REGULARIZATION
    ALFARO, J
    NUCLEAR PHYSICS B, 1985, 253 (3-4) : 464 - 476
  • [40] ON REGULARIZATION OF FUNCTIONAL EQUATIONS
    BRAUNSS, G
    MATHEMATISCHE ANNALEN, 1970, 186 (01) : 70 - &