Stochastic regularization for transport equations

被引:0
|
作者
Jinlong Wei
Jinqiao Duan
Hongjun Gao
Guangying Lv
机构
[1] Zhongnan University of Economics and Law,School of Statistics and Mathematics
[2] Illinois Institute of Technology,Department of Applied Mathematics
[3] Southeast University,School of Mathematics
[4] Nanjing Normal University,Institute of Mathematics, School of Mathematical Science
[5] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
关键词
Stochastic transport equations; Stochastic strong solution; Uniqueness; Existence; Nonexistence; 60H15 (35A01 35L02 35R60);
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a stochastic transport equation driven by a multiplicative noise. For drift coefficients in Lq(0,T;Cbα(Rd))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q(0,T;{\mathcal {C}}^\alpha _b({\mathbb {R}}^d))$$\end{document} (α>2/q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >2/q$$\end{document}) and initial data in W1,r(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,r}({\mathbb {R}}^d)$$\end{document}, we show the existence and uniqueness of stochastic strong solutions. Opposite to the deterministic case where the same assumptions on drift coefficients and initial data induce nonexistence of strong solutions, we prove that a multiplicative stochastic perturbation of Brownian type is enough to render the equation well-posed. However, for α+1<2/q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha +1<2/q$$\end{document} with spatial dimension higher than one, we can choose suitable initial data and drift coefficients so that the stochastic strong solutions do not exist.
引用
收藏
页码:105 / 141
页数:36
相关论文
共 50 条
  • [1] Stochastic regularization for transport equations
    Wei, Jinlong
    Duan, Jinqiao
    Gao, Hongjun
    Lv, Guangying
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (01): : 105 - 141
  • [2] Renormalized Solutions for Stochastic Transport Equations and the Regularization by Bilinear Multiplicative Noise
    Attanasio, S.
    Flandoli, F.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) : 1455 - 1474
  • [3] Regularization by noise and stochastic burgers equations
    Gubinelli M.
    Jara M.
    Stochastic Partial Differential Equations: Analysis and Computations, 2013, 1 (2) : 325 - 350
  • [4] Regularization by noise for stochastic Hamilton–Jacobi equations
    Paul Gassiat
    Benjamin Gess
    Probability Theory and Related Fields, 2019, 173 : 1063 - 1098
  • [5] Stochastic regularization and stabilization of hybrid functional differential equations
    Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing
    100190, China
    不详
    430074, China
    不详
    MI
    48202, United States
    Proc IEEE Conf Decis Control, (1211-1216):
  • [6] Regularization by noise for stochastic Hamilton-Jacobi equations
    Gassiat, Paul
    Gess, Benjamin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 173 (3-4) : 1063 - 1098
  • [7] Stochastic Regularization and Stabilization of Hybrid Functional Differential Equations
    Zong, Xiaofeng
    Wu, Fuke
    Yin, George
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1211 - 1216
  • [8] Stochastic Entropy Solutions for Stochastic Nonlinear Transport Equations
    Tian, Rongrong
    Tang, Yanbin
    ENTROPY, 2018, 20 (06)
  • [9] STOCHASTIC REGULARIZATION OF LINEAR-EQUATIONS AND THE REALIZATION OF GAUSSIAN FIELDS
    PICCIONI, M
    ROMA, M
    JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 33 (01) : 143 - 150
  • [10] Stochastic Transport Equations with Unbounded Divergence
    Wladimir Neves
    Christian Olivera
    Journal of Nonlinear Science, 2022, 32