Predicting preterm birth using machine learning techniques in oral microbiome

被引:0
|
作者
You Mi Hong
Jaewoong Lee
Dong Hyu Cho
Jung Hun Jeon
Jihoon Kang
Min-Gul Kim
Semin Lee
Jin Kyu Kim
机构
[1] Asan Medical Center,Department of Obstetrics and Gynecology, University of Ulsan College of Medicine
[2] Ulsan National Institute of Science and Technology (UNIST),Department of Biomedical Engineering
[3] Jeonbuk National University Medical School,Department of Obstetrics and Gynecology
[4] Research Institute of Jeonbuk National University Hospital,Research Institute of Clinical Medicine of Jeonbuk National University–Biomedical
[5] Helixco Inc.,Department of Pharmacology
[6] Jeonbuk National University Medical School,Department of Pediatrics
[7] Jeonbuk National University Medical School,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Preterm birth prediction is essential for improving neonatal outcomes. While many machine learning techniques have been applied to predict preterm birth using health records, inflammatory markers, and vaginal microbiome data, the role of prenatal oral microbiome remains unclear. This study aimed to compare oral microbiome compositions between a preterm and a full-term birth group, identify oral microbiome associated with preterm birth, and develop a preterm birth prediction model using machine learning of oral microbiome compositions. Participants included singleton pregnant women admitted to Jeonbuk National University Hospital between 2019 and 2021. Subjects were divided into a preterm and a full-term birth group based on pregnancy outcomes. Oral microbiome samples were collected using mouthwash within 24 h before delivery and 16S ribosomal RNA sequencing was performed to analyze taxonomy. Differentially abundant taxa were identified using DESeq2. A random forest classifier was applied to predict preterm birth based on the oral microbiome. A total of 59 women participated in this study, with 30 in the preterm birth group and 29 in the full-term birth group. There was no significant difference in maternal clinical characteristics between the preterm and the full-birth group. Twenty-five differentially abundant taxa were identified, including 22 full-term birth-enriched taxa and 3 preterm birth-enriched taxa. The random forest classifier achieved high balanced accuracies (0.765 ± 0.071) using the 9 most important taxa. Our study identified 25 differentially abundant taxa that could differentiate preterm and full-term birth groups. A preterm birth prediction model was developed using machine learning of oral microbiome compositions in mouthwash samples. Findings of this study suggest the potential of using oral microbiome for predicting preterm birth. Further multi-center and larger studies are required to validate our results before clinical applications.
引用
收藏
相关论文
共 50 条
  • [41] Predicting students' performance in distance learning using machine learning techniques
    Kotsiantis, S
    Pierrakeas, C
    Pintelas, P
    APPLIED ARTIFICIAL INTELLIGENCE, 2004, 18 (05) : 411 - 426
  • [42] Biomarker Identification for Preterm Birth Susceptibility: Vaginal Microbiome Meta-Analysis Using Systems Biology and Machine Learning Approaches
    Kulshrestha, Sudeepti
    Narad, Priyanka
    Singh, Brojen
    Pai, Somnath S.
    Vijayaraghavan, Pooja
    Tandon, Ansh
    Gupta, Payal
    Modi, Deepak
    Sengupta, Abhishek
    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, 2024, 92 (01)
  • [43] Predicting wax deposition using robust machine learning techniques
    Amar, Menad Nait
    Ghahfarokhi, Ashkan Jahanbani
    Ng, Cuthbert Shang Wui
    PETROLEUM, 2022, 8 (02) : 167 - 173
  • [44] Modeling and predicting US recessions using machine learning techniques
    Vrontos, Spyridon D.
    Galakis, John
    Vrontos, Ioannis D.
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (02) : 647 - 671
  • [45] Predicting ESG Controversies in Banks Using Machine Learning Techniques
    Dipierro, Anna Rita
    Barrionuevo, Fernando Jimenez
    Toma, Pierluigi
    CORPORATE SOCIAL RESPONSIBILITY AND ENVIRONMENTAL MANAGEMENT, 2025,
  • [46] Predicting Success of Bollywood Movies Using Machine Learning Techniques
    Jaiswal, Sameer Ranjan
    Sharma, Divyansh
    COMPUTE'17: PROCEEDINGS OF THE 10TH ANNUAL ACM INDIA COMPUTE CONFERENCE, 2017, : 121 - 124
  • [47] Predicting Recidivism to Drug Distribution using Machine Learning Techniques
    Butsara, Nuttawit
    Athonthitichot, Panchan
    Jodpimai, Pichai
    2019 17TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2019, : 165 - 169
  • [48] Predicting Market Performance Using Machine and Deep Learning Techniques
    El Mahjouby, Mohamed
    Bennani, Mohamed Taj
    Lamrini, Mohamed
    Bossoufi, Badre
    Alghamdi, Thamer A. H.
    El Far, Mohamed
    IEEE ACCESS, 2024, 12 : 82033 - 82040
  • [49] Predicting malaria outbreak in The Gambia using machine learning techniques
    Khan, Ousman
    Ajadi, Jimoh Olawale
    Hossain, M. Pear
    PLOS ONE, 2024, 19 (05):
  • [50] Predicting Postgraduate Students' Performance Using Machine Learning Techniques
    Koutina, Maria
    Kermanidis, Katia Lida
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT II, 2011, 364 : 159 - 168