Predicting preterm birth using machine learning techniques in oral microbiome

被引:0
|
作者
You Mi Hong
Jaewoong Lee
Dong Hyu Cho
Jung Hun Jeon
Jihoon Kang
Min-Gul Kim
Semin Lee
Jin Kyu Kim
机构
[1] Asan Medical Center,Department of Obstetrics and Gynecology, University of Ulsan College of Medicine
[2] Ulsan National Institute of Science and Technology (UNIST),Department of Biomedical Engineering
[3] Jeonbuk National University Medical School,Department of Obstetrics and Gynecology
[4] Research Institute of Jeonbuk National University Hospital,Research Institute of Clinical Medicine of Jeonbuk National University–Biomedical
[5] Helixco Inc.,Department of Pharmacology
[6] Jeonbuk National University Medical School,Department of Pediatrics
[7] Jeonbuk National University Medical School,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Preterm birth prediction is essential for improving neonatal outcomes. While many machine learning techniques have been applied to predict preterm birth using health records, inflammatory markers, and vaginal microbiome data, the role of prenatal oral microbiome remains unclear. This study aimed to compare oral microbiome compositions between a preterm and a full-term birth group, identify oral microbiome associated with preterm birth, and develop a preterm birth prediction model using machine learning of oral microbiome compositions. Participants included singleton pregnant women admitted to Jeonbuk National University Hospital between 2019 and 2021. Subjects were divided into a preterm and a full-term birth group based on pregnancy outcomes. Oral microbiome samples were collected using mouthwash within 24 h before delivery and 16S ribosomal RNA sequencing was performed to analyze taxonomy. Differentially abundant taxa were identified using DESeq2. A random forest classifier was applied to predict preterm birth based on the oral microbiome. A total of 59 women participated in this study, with 30 in the preterm birth group and 29 in the full-term birth group. There was no significant difference in maternal clinical characteristics between the preterm and the full-birth group. Twenty-five differentially abundant taxa were identified, including 22 full-term birth-enriched taxa and 3 preterm birth-enriched taxa. The random forest classifier achieved high balanced accuracies (0.765 ± 0.071) using the 9 most important taxa. Our study identified 25 differentially abundant taxa that could differentiate preterm and full-term birth groups. A preterm birth prediction model was developed using machine learning of oral microbiome compositions in mouthwash samples. Findings of this study suggest the potential of using oral microbiome for predicting preterm birth. Further multi-center and larger studies are required to validate our results before clinical applications.
引用
收藏
相关论文
共 50 条
  • [21] Predicting extubation readiness in preterm infants using machine learning
    Brasher, M.
    Wirian, Y.
    Raffay, T. M.
    Bada, H.
    Cunningham, M. D.
    Cheng, Q.
    Abu Jawdeh, E. G.
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2023, 365 : S272 - S272
  • [22] Predicting performance of swimmers using machine learning techniques
    Guerra-Salcedo, Cesar M.
    Janek, Libor
    Perez-Ortega, Joaquin
    Pazos-Rangel, Rodolfo A.
    WMSCI 2005: 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Vol 3, 2005, : 146 - 148
  • [23] Predicting Blood Donors Using Machine Learning Techniques
    Kauten, Christian
    Gupta, Ashish
    Qin, Xiao
    Richey, Glenn
    INFORMATION SYSTEMS FRONTIERS, 2022, 24 (05) : 1547 - 1562
  • [24] Predicting Driver Destination using Machine Learning Techniques
    Manasseh, Christian
    Sengupta, Raja
    2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 142 - 147
  • [25] Predicting bank insolvencies using machine learning techniques
    Petropoulos, Anastasios
    Siakoulis, Vasilis
    Stavroulakis, Evangelos
    Vlachogiannakis, Nikolaos E.
    INTERNATIONAL JOURNAL OF FORECASTING, 2020, 36 (03) : 1092 - 1113
  • [26] Predicting Employee Attrition Using Machine Learning Techniques
    Fallucchi, Francesca
    Coladangelo, Marco
    Giuliano, Romeo
    De Luca, Ernesto William
    COMPUTERS, 2020, 9 (04) : 1 - 17
  • [27] Predicting Blood Donors Using Machine Learning Techniques
    Christian Kauten
    Ashish Gupta
    Xiao Qin
    Glenn Richey
    Information Systems Frontiers, 2022, 24 : 1547 - 1562
  • [28] Predicting Students' Emotions Using Machine Learning Techniques
    Altrabsheh, Nabeela
    Cocea, Mihaela
    Fallahkhair, Sanaz
    ARTIFICIAL INTELLIGENCE IN EDUCATION, AIED 2015, 2015, 9112 : 537 - 540
  • [29] Predicting Software Anomalies using Machine Learning Techniques
    Alonso, Javier
    Belanche, Lluis
    Avresky, Dimiter R.
    2011 10TH IEEE INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA), 2011,
  • [30] Predicting Power Consumption Using Machine Learning Techniques
    Allal, Zaid
    Noura, Hassan
    Salman, Ola
    Vernier, Flavien
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 1522 - 1527