Gain of regularity for semilinear Schrödinger equations

被引:0
|
作者
Hiroyuki Chihara
机构
[1] Department of Mathematical Sciences,
[2] Shinshu University,undefined
[3] Matsumoto 390-8621,undefined
[4] Japan (e-mail: chihara@math.shinshu-u.ac.jp) ,undefined
来源
Mathematische Annalen | 1999年 / 315卷
关键词
Mathematics Subject Classification (1991):35Q55, 35B65, 35G25, 35S05;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss local existence and gain of regularity for semilinear Schrödinger equations which generally cause loss of derivatives. We prove our results by advanced energy estimates. More precisely, block diagonalization and Doi's transformation, together with symbol smoothing for pseudodifferential operators with nonsmooth coefficients, apply to systems of Schrödinger-type equations. In particular, the sharp Gårding inequality for pseudodifferential operators whose coefficients are twice continuously differentiable, plays a crucial role in our proof.
引用
收藏
页码:529 / 567
页数:38
相关论文
共 50 条
  • [31] On a class of quasilinear Schrdinger equations
    舒级
    张健
    Applied Mathematics and Mechanics(English Edition), 2007, (07) : 981 - 986
  • [32] On a class of quasilinear schrödinger equations
    Ji Shu
    Jian Zhang
    Applied Mathematics and Mechanics, 2007, 28 : 981 - 986
  • [33] Schrödinger Equations with Fractional Laplacians
    Y. Hu
    G. Kallianpur
    Applied Mathematics & Optimization, 2000, 42 : 281 - 290
  • [34] Attractors of nonautonomous Schrödinger equations
    Yu-rong L.
    Zeng-rong L.
    Yong-ai Z.
    Applied Mathematics and Mechanics, 2001, 22 (2) : 180 - 189
  • [35] Attractors of Nonautonomous Schrödinger Equations
    Yu-rong Liu
    Zeng-rong Liu
    Yong-ai Zheng
    Applied Mathematics and Mechanics, 2001, 22 : 180 - 189
  • [36] On the quasilinear Schrödinger equations on tori
    Iandoli, Felice
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (04) : 1913 - 1930
  • [37] On Turbulence in Nonlinear Schrödinger Equations
    S.B. Kuksin
    Geometric and Functional Analysis, 1997, 7 : 783 - 822
  • [38] On the hyperbolic nonlinear Schrödinger equations
    Saut, Jean-Claude
    Wang, Yuexun
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [39] Spherical Perturbations of Schrödinger Equations
    J.A. Barceló
    J.M. Bennett
    A. Ruiz
    Journal of Fourier Analysis and Applications, 2006, 12 : 269 - 290
  • [40] On Schrödinger Equations of Okubo Type
    G. Giorgadze
    G. Khimshiashvili
    Journal of Dynamical and Control Systems, 2004, 10 : 171 - 186