Multipurpose machine scheduling with rejection and identical job processing times

被引:0
|
作者
Dvir Shabtay
Shlomo Karhi
Daniel Oron
机构
[1] Ben-Gurion University of the Negev,Department of Industrial Engineering and Management
[2] The University of Sydney Business School,undefined
来源
Journal of Scheduling | 2015年 / 18卷
关键词
Scheduling on multipurpose machines; Job rejection ; Optimization and complexity;
D O I
暂无
中图分类号
学科分类号
摘要
We study a set of scheduling problems on a uniform machine setting. We focus on the case of equal processing time jobs with the additional feature of job rejection. Jobs can either be processed on a predefined set of machines or rejected. Rejected jobs incur a rejection penalty and have no effect on the scheduling criterion under consideration. A solution to our problems consists of partitioning the jobs into two subsets, A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} and A¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{A}$$\end{document}, which are the set of accepted and the set of rejected jobs, respectively. In addition, jobs in set A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} have to be scheduled on the m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} machines. We evaluate the quality of a solution by two criteria. The first, F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}$$\end{document}, can be any regular scheduling criterion, while the latter, F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{2}$$\end{document}, is the total rejection cost. We consider two possible types of regular scheduling criteria; the former is a maximization criterion, while the latter is a summation criterion. For each criterion type we consider four different problem variations. We prove that all four variations are solvable in polynomial time for any\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$any$$\end{document} maximization type of a regular scheduling criterion. When the scheduling criterion is of summation type, we show that only one of the four problem variations is solvable in polynomial time. We provide a pseudo-polynomial time algorithms to solve interesting variants of the NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-hard problems, as well as a polynomial time algorithm that solves various other special cases.
引用
收藏
页码:75 / 88
页数:13
相关论文
共 50 条
  • [41] Two-machine job shop scheduling with optional job rejection
    Chen, Ren-Xia
    Li, Shi-Sheng
    OPTIMIZATION LETTERS, 2024, 18 (07) : 1593 - 1618
  • [42] Minimizing the maximum lateness for scheduling with release times and job rejection
    Kacem, Imed
    Kellerer, Hans
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (03)
  • [43] Single-machine group-scheduling problems with deteriorating setup times and job-processing times
    Wu, Chin-Chia
    Lee, Wen-Chiung
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2008, 115 (01) : 128 - 133
  • [44] Earliness-tardiness minimization on scheduling a batch processing machine with non-identical job sizes
    Li, Zhongya
    Chen, Huaping
    Xu, Rui
    Li, Xueping
    COMPUTERS & INDUSTRIAL ENGINEERING, 2015, 87 : 590 - 599
  • [45] Scheduling a single batch processing machine with non-identical two-dimensional job sizes
    Zhou, Shengchao
    Jin, Mingzhou
    Liu, Chuang
    Zheng, Xu
    Chen, Huaping
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 201
  • [46] Minmax scheduling and due-window assignment with position-dependent processing times and job rejection
    Mosheiov, Gur
    Sarig, Assaf
    Strusevich, Vitaly
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2020, 18 (04): : 439 - 456
  • [47] Bicriteria scheduling problems involving job rejection, controllable processing times and rate-modifying activity
    Wang, Du-Juan
    Yin, Yunqiang
    Liu, Mengqi
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2016, 54 (12) : 3691 - 3705
  • [48] A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times
    Tahar, DN
    Yalaoui, F
    Chu, CB
    Amodeo, L
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2006, 99 (1-2) : 63 - 73
  • [49] Minmax scheduling and due-window assignment with position-dependent processing times and job rejection
    Gur Mosheiov
    Assaf Sarig
    Vitaly Strusevich
    4OR, 2020, 18 : 439 - 456
  • [50] Scheduling unrelated parallel batch processing machines with non-identical job sizes and unequal ready times
    Arroyo, Jose Elias C.
    Leung, Joseph Y. -T.
    COMPUTERS & OPERATIONS RESEARCH, 2017, 78 : 117 - 128