Multipurpose machine scheduling with rejection and identical job processing times

被引:0
|
作者
Dvir Shabtay
Shlomo Karhi
Daniel Oron
机构
[1] Ben-Gurion University of the Negev,Department of Industrial Engineering and Management
[2] The University of Sydney Business School,undefined
来源
Journal of Scheduling | 2015年 / 18卷
关键词
Scheduling on multipurpose machines; Job rejection ; Optimization and complexity;
D O I
暂无
中图分类号
学科分类号
摘要
We study a set of scheduling problems on a uniform machine setting. We focus on the case of equal processing time jobs with the additional feature of job rejection. Jobs can either be processed on a predefined set of machines or rejected. Rejected jobs incur a rejection penalty and have no effect on the scheduling criterion under consideration. A solution to our problems consists of partitioning the jobs into two subsets, A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} and A¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{A}$$\end{document}, which are the set of accepted and the set of rejected jobs, respectively. In addition, jobs in set A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} have to be scheduled on the m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} machines. We evaluate the quality of a solution by two criteria. The first, F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}$$\end{document}, can be any regular scheduling criterion, while the latter, F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{2}$$\end{document}, is the total rejection cost. We consider two possible types of regular scheduling criteria; the former is a maximization criterion, while the latter is a summation criterion. For each criterion type we consider four different problem variations. We prove that all four variations are solvable in polynomial time for any\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$any$$\end{document} maximization type of a regular scheduling criterion. When the scheduling criterion is of summation type, we show that only one of the four problem variations is solvable in polynomial time. We provide a pseudo-polynomial time algorithms to solve interesting variants of the NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-hard problems, as well as a polynomial time algorithm that solves various other special cases.
引用
收藏
页码:75 / 88
页数:13
相关论文
共 50 条
  • [21] Single machine common due window scheduling with controllable job processing times
    Wan, Guohua
    Combinatorial Optimization and Applications, Proceedings, 2007, 4616 : 279 - 290
  • [22] Parallel machine scheduling with restricted job rejection
    Zhong, Xueling
    Ou, Jinwen
    THEORETICAL COMPUTER SCIENCE, 2017, 690 : 1 - 11
  • [23] Scheduling a batch-processing machine subject to precedence constraints, release dates and identical processing times
    Cheng, TCE
    Yuan, JJ
    Yang, AF
    COMPUTERS & OPERATIONS RESEARCH, 2005, 32 (04) : 849 - 859
  • [24] Two-Machine Job-Shop Scheduling with Equal Processing Times on Each Machine
    Gafarov, Evgeny
    Werner, Frank
    MATHEMATICS, 2019, 7 (03):
  • [25] Minimising makespan heuristics for scheduling a single batch machine processing machine with non-identical job sizes
    Lee, Yoon Ho
    Lee, Young Hoon
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2013, 51 (12) : 3488 - 3500
  • [26] A note on scheduling multiprocessor tasks with identical processing times
    Baptiste, P
    COMPUTERS & OPERATIONS RESEARCH, 2003, 30 (13) : 2071 - 2078
  • [27] Fuzzy Scheduling for Single Batch-processing Machine with Non-identical Job Sizes
    Cheng, Ba-yi
    Chen, Hua-ping
    Wang, Shuan-shi
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 27 - 30
  • [28] Batch scheduling of identical jobs with controllable processing times
    Mor, Baruch
    Mosheiov, Gur
    COMPUTERS & OPERATIONS RESEARCH, 2014, 41 : 115 - 124
  • [29] Bi-objective optimization of identical parallel machine scheduling with flexible maintenance and job release times
    Chen, Yarong
    Guan, Zailin
    Wang, Chen
    Chou, Fuh-Der
    Yue, Lei
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING COMPUTATIONS, 2022, 13 (04) : 457 - 472
  • [30] Job shop scheduling with unit, processing times
    Bansal, Nikhil
    Kimbrel, Tracy
    Sviridenko, Maxim
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 207 - 214