Sparse regularized discriminative canonical correlation analysis for multi-view semi-supervised learning

被引:0
|
作者
Shudong Hou
Heng Liu
Quansen Sun
机构
[1] Anhui University of Technology,School of Computer Science and Technology
[2] Nanjing University of Science and Technology,School of Computer Science and Engineering
来源
关键词
Canonical correlation analysis; Sparse representation; Semi-supervised learning; Dimension reduction; Feature extraction;
D O I
暂无
中图分类号
学科分类号
摘要
For multi-view data representation learning, recently the traditional unsupervised CCA method has been converted to supervised ways by introducing label information from samples. However, such supervised CCA variants require large numbers of labeled samples which hampers its practical application. In this paper, in order to mine the most discriminant information only from a few labeled samples, inspired by sparse representation we propose a novel sparse regularized discriminative CCA method to make use of the label information as much as possible. Through constructing sparse weighted matrices in multiple views, we incorporate the structure information into the original CCA framework to extract fused multi-view features which not only are the most correlated but also carry the important discriminative structure information. Our approach is evaluated on both handwritten dataset and face dataset. The experimental results and the comparisons with other related algorithms demonstrate its effectiveness and superiority.
引用
收藏
页码:7351 / 7359
页数:8
相关论文
共 50 条
  • [31] Embedding Regularizer Learning for Multi-View Semi-Supervised Classification
    Huang, Aiping
    Wang, Zheng
    Zheng, Yannan
    Zhao, Tiesong
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6997 - 7011
  • [32] Semi-Supervised Structured Subspace Learning for Multi-View Clustering
    Qin, Yalan
    Wu, Hanzhou
    Zhang, Xinpeng
    Feng, Guorui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1 - 14
  • [33] Multi-view Semi-Supervised Learning for Cooperative Spectrum Sensing
    Li, Lusi
    Slayton, Laura
    Li, Hepeng
    He, Haibo
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [34] Semi-supervised Deep Representation Learning for Multi-View Problems
    Noroozi, Vahid
    Bahaadini, Sara
    Zheng, Lei
    Xie, Sihong
    Shao, Weixiang
    Yu, Philip S.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 56 - 64
  • [35] Multi-view Semi-supervised Learning Using Privileged Information
    Smirnov, Evgueni
    Delava, Richard
    Diris, Ron
    Nikolaev, Nikolay
    24TH INTERNATIONAL CONFERENCE ON ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2023, 2023, 1826 : 144 - 152
  • [36] Semi-supervised one-pass multi-view learning
    Changming Zhu
    Zhe Wang
    Rigui Zhou
    Lai Wei
    Xiafen Zhang
    Yi Ding
    Neural Computing and Applications, 2019, 31 : 8117 - 8134
  • [37] Semi-Supervised Multi-View Learning for Gene Network Reconstruction
    Ceci, Michelangelo
    Pio, Gianvito
    Kuzmanovski, Vladimir
    Dzeroski, Saso
    PLOS ONE, 2015, 10 (12):
  • [38] Inductive Multi-View Semi-supervised Learning with a Consensus Graph
    N. Ziraki
    A. Bosaghzadeh
    F. Dornaika
    Z. Ibrahim
    N. Barrena
    Cognitive Computation, 2023, 15 : 904 - 913
  • [39] Trusted Semi-Supervised Multi-View Classification With Contrastive Learning
    Wang, Xiaoli
    Wang, Yongli
    Wang, Yupeng
    Huang, Anqi
    Liu, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8268 - 8278
  • [40] Semi-supervised one-pass multi-view learning
    Zhu, Changming
    Wang, Zhe
    Zhou, Rigui
    Wei, Lai
    Zhang, Xiafen
    Ding, Yi
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11): : 8117 - 8134