Trusted Semi-Supervised Multi-View Classification With Contrastive Learning

被引:0
|
作者
Wang, Xiaoli [1 ]
Wang, Yongli [1 ]
Wang, Yupeng [1 ]
Huang, Anqi [1 ]
Liu, Jun [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210000, Peoples R China
[2] Singapore Univ Technol & Design, Singapore 48737, Singapore
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; multi-view classification; contrastive learning; uncertainty estimation; REPRESENTATION;
D O I
10.1109/TMM.2024.3379079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semi-supervised multi-view learning is a remarkable but challenging task. Existing semi-supervised multi-view classification (SMVC) approaches mainly focus on performance improvement while ignoring decision reliability, which limits their deployment in safety-critical applications. Although several trusted multi-view classification methods are proposed recently, they rely on manual annotations. Therefore, this work emphasizes trusted multi-view classification learning under semi-supervised conditions. Different from existing SMVC methods, this work jointly models class probabilities and uncertainties based on evidential deep learning to formulate view-specific opinions. Moreover, unlike previous works that explore cross-view consistency in a single schema, this work proposes a multi-level consistency constraint. Specifically, we explore instance-level consistency on the view-specific representation space and category-level consistency on opinions from multiple views. Our proposed trusted graph-based contrastive loss nicely establishes the relationship between joint opinions and view-specific representations, which enables view-specific representations to enjoy a good manifold to improve classification performance. Overall, the proposed approach provides reliable and superior semi-supervised multi-view classification decisions. Extensive experiments demonstrate the effectiveness, reliability and robustness of the proposed model.
引用
收藏
页码:8268 / 8278
页数:11
相关论文
共 50 条
  • [1] SMGCL: Semi-supervised Multi-view Graph Contrastive Learning
    Zhou, Hui
    Gong, Maoguo
    Wang, Shanfeng
    Gao, Yuan
    Zhao, Zhongying
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [2] Multi-view Learning for Semi-supervised Sentiment Classification
    Su, Yan
    Li, Shoushan
    Ju, Shengfeng
    Zhou, Guodong
    Li, Xiaojun
    2012 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2012), 2012, : 13 - 16
  • [3] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    NEUROCOMPUTING, 2016, 208 : 136 - 142
  • [4] Embedding Regularizer Learning for Multi-View Semi-Supervised Classification
    Huang, Aiping
    Wang, Zheng
    Zheng, Yannan
    Zhao, Tiesong
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6997 - 7011
  • [5] Semi-Supervised Learning for Multi-View Data Classification and Visualization
    Ziraki, Najmeh
    Bosaghzadeh, Alireza
    Dornaika, Fadi
    INFORMATION, 2024, 15 (07)
  • [6] Multi-view semi-supervised learning for classification on dynamic networks
    Chen, Chuan
    Li, Yuzheng
    Qian, Hui
    Zheng, Zibin
    Hu, Yanqing
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [7] Multi-view semi-supervised classification overview
    Jiang, Lekang
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [8] Latent Multi-view Semi-Supervised Classification
    Bo, Xiaofan
    Kang, Zhao
    Zhao, Zhitong
    Su, Yuanzhang
    Chen, Wenyu
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 348 - 362
  • [9] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [10] MMatch: Semi-Supervised Discriminative Representation Learning for Multi-View Classification
    Wang, Xiaoli
    Fu, Liyong
    Zhang, Yudong
    Wang, Yongli
    Li, Zechao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 6425 - 6436