Gabor windows supported on [ − 1, 1] and dual windows with small support

被引:0
|
作者
Ole Christensen
Hong Oh Kim
Rae Young Kim
机构
[1] Technical University of Denmark,Department of Mathematics
[2] KAIST,Department of Mathematical Sciences
[3] Yeungnam University,Department of Mathematics
来源
Advances in Computational Mathematics | 2012年 / 36卷
关键词
Gabor frame; Compactly supported window; Compactly supported dual window; 42C15; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a continuous function g ∈ L2(ℝ) that is supported on [ − 1, 1] and generates a Gabor frame with translation parameter 1 and modulation parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<b< \frac{2N}{2N+1}$\end{document} for some N ∈ ℕ. Under an extra condition on the zeroset of the window g we show that there exists a continuous dual window supported on [ − N, N]. We also show that this result is optimal: indeed, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b>\frac{2N}{2N+1}$\end{document} then a dual window supported on [ − N, N] does not exist. In the limit case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b=\frac{2N}{2N+1}$\end{document} a dual window supported on [ − N, N] might exist, but cannot be continuous.
引用
收藏
页码:525 / 545
页数:20
相关论文
共 50 条
  • [41] XCELLENCE IN WINDOWS - ADVANTAGES OF A STANDARD .1.
    MCCARTNEY, I
    MINI-MICRO SYSTEMS, 1987, 20 (07): : 139 - 141
  • [42] Design and Performances of Dual Airflow Windows
    Sun, Bo
    Zhao, Jianing
    Wei, Jingshu
    ADVANCED SCIENCE LETTERS, 2011, 4 (4-5) : 1439 - 1443
  • [43] AccuModel vl.1 for Windows 95
    Ventura, ON
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1998, 38 (04): : 768 - 770
  • [44] Developers, manufacturers support Windows DNA
    不详
    CONTROL ENGINEERING, 1999, 46 (04) : 25 - 25
  • [45] MATRIX(X) support for Windows 95
    不详
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 1996, 68 (01): : 41 - 42
  • [46] Efficient discrete Gabor transform with weighted linear combination of analysis windows
    Li, Rui
    Tao, Liang
    Kwan, Hon Keung
    ELECTRONICS LETTERS, 2016, 52 (09) : 772 - 773
  • [47] Sub-Nyquist Sampling Based on Exponential Reproducing Gabor Windows
    Cheng, Wang
    Peng, Chen
    Chen, Meng
    Jin, Luo
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2018, 423 : 605 - 613
  • [48] Fast Approach for Analysis Windows Computation of Multiwindow Discrete Gabor Transform
    Li, Rui
    Liu, Jia-Bao
    IEEE ACCESS, 2018, 6 : 45681 - 45689
  • [49] Windows 95 suitable for small networks
    Engineers Australia, 1995, 67 (10):
  • [50] Local Ellipsometric Inspection of Small Windows
    Lonskii E.S.
    Russian Microelectronics, 2002, 31 (2) : 126 - 129