Gabor windows supported on [ − 1, 1] and dual windows with small support

被引:0
|
作者
Ole Christensen
Hong Oh Kim
Rae Young Kim
机构
[1] Technical University of Denmark,Department of Mathematics
[2] KAIST,Department of Mathematical Sciences
[3] Yeungnam University,Department of Mathematics
来源
Advances in Computational Mathematics | 2012年 / 36卷
关键词
Gabor frame; Compactly supported window; Compactly supported dual window; 42C15; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a continuous function g ∈ L2(ℝ) that is supported on [ − 1, 1] and generates a Gabor frame with translation parameter 1 and modulation parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<b< \frac{2N}{2N+1}$\end{document} for some N ∈ ℕ. Under an extra condition on the zeroset of the window g we show that there exists a continuous dual window supported on [ − N, N]. We also show that this result is optimal: indeed, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b>\frac{2N}{2N+1}$\end{document} then a dual window supported on [ − N, N] does not exist. In the limit case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b=\frac{2N}{2N+1}$\end{document} a dual window supported on [ − N, N] might exist, but cannot be continuous.
引用
收藏
页码:525 / 545
页数:20
相关论文
共 50 条