Given a prime p, we consider the dynamical system generated by repeated exponentiations modulo p, that is, by the map \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${u \mapsto f_g(u)}$$\end{document}, where fg(u) ≡ gu (mod p) and 0 ≤ fg(u) ≤ p − 1. This map is in particular used in a number of constructions of cryptographically secure pseudorandom generators. We obtain nontrivial upper bounds on the number of fixed points and short cycles in the above dynamical system.
机构:
Microsoft Res, Redmond, WA 98052 USAMicrosoft Res, Redmond, WA 98052 USA
Montgomery, Peter L.
Nahm, Sangil
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USAMicrosoft Res, Redmond, WA 98052 USA
Nahm, Sangil
Wagstaff, Samuel S., Jr.
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Ctr Educ & Res Informat Assurance & Secur, W Lafayette, IN 47907 USA
Purdue Univ, Dept Math & Comp Sci, W Lafayette, IN 47907 USAMicrosoft Res, Redmond, WA 98052 USA