Short cycles in repeated exponentiation modulo a prime

被引:0
|
作者
Lev Glebsky
Igor E. Shparlinski
机构
[1] Universidad Autónoma de San Luis Potosí,Instituto de Investigación en Comunicación Óptica
[2] Macquarie University,Department of Computing
来源
关键词
Discrete logarithm; Cycle; Dynamical system; 11A07; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Given a prime p, we consider the dynamical system generated by repeated exponentiations modulo p, that is, by the map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \mapsto f_g(u)}$$\end{document}, where fg(u) ≡ gu (mod p) and 0 ≤ fg(u) ≤ p − 1. This map is in particular used in a number of constructions of cryptographically secure pseudorandom generators. We obtain nontrivial upper bounds on the number of fixed points and short cycles in the above dynamical system.
引用
收藏
页码:35 / 42
页数:7
相关论文
共 50 条
  • [31] SUMS OF SUBSEQUENCES MODULO PRIME POWERS
    ALON, N
    DISCRETE MATHEMATICS, 1988, 71 (01) : 87 - 88
  • [32] Computing the permanent modulo a prime power
    Bjorklund, Andreas
    Husfeldt, Thore
    Lyckberg, Isak
    INFORMATION PROCESSING LETTERS, 2017, 125 : 20 - 25
  • [33] Factoring Hecke polynomials modulo a prime
    Conrey, JB
    Farmer, DW
    Wallace, PJ
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 196 (01) : 123 - 130
  • [34] Fibonacci and Lucas Products Modulo A Prime
    Seibert, Jaroslav
    Bruckman, Paul S.
    Greubel, G. C.
    Roelants, Herman
    FIBONACCI QUARTERLY, 2008, 46-47 (01): : 88 - 88
  • [35] DISTINGUISHING EIGENFORMS MODULO A PRIME IDEAL
    Chow, Sam
    Ghitza, Alexandru
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (02) : 363 - 377
  • [36] PRODUCT WITH COUNTER MODULO A PRIME NUMBER
    PELADEAU, P
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1992, 26 (06): : 553 - 564
  • [37] POINCARE ALGEBRAS MODULO AN ODD PRIME
    STONG, RE
    COMMENTARII MATHEMATICI HELVETICI, 1974, 49 (03) : 382 - 407
  • [38] Cameron-Erdos modulo a prime
    Lev, VF
    Schoen, T
    FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (01) : 108 - 119
  • [39] CONGRUENCES OF THE FIBONACCI NUMBERS MODULO A PRIME
    Zyuz'kov, V. M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2021, (69): : 15 - 21
  • [40] POLYNOMIALS REDUCIBLE MODULO EVERY PRIME
    CHILDS, L
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (05): : 390 - 391