Remarks on Anomalous Symmetries of C*-Algebras

被引:0
|
作者
Corey Jones
机构
[1] North Carolina State University,
来源
Communications in Mathematical Physics | 2021年 / 388卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a group G and ω∈Z3(G,U(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in Z^{3}(G, \text {U}(1))$$\end{document}, an ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-anomalous action on a C*-algebra B is a U(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {U}(1)$$\end{document}-linear monoidal functor between 2-groups [inline-graphic not available: see fulltext], where the latter denotes the 2-group of ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-automorphisms of B. The class [ω]∈H3(G,U(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\omega ]\in H^{3}(G, \text {U}(1))$$\end{document} is called the anomaly of the action. We show that for every n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and every finite group G, every anomaly can be realized on the stabilization of a commutative C*-algebra C(M)⊗K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(M)\otimes {\mathcal {K}}$$\end{document} for some closed connected n-manifold M. We also show that although there are no anomalous symmetries of Roe C*-algebras of coarse spaces, for every finite group G, every anomaly can be realized on the Roe corona C∗(X)/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}(X)/{\mathcal {K}}$$\end{document} of some bounded geometry metric space X with property A.
引用
收藏
页码:385 / 417
页数:32
相关论文
共 50 条
  • [41] SYMMETRIES ON HEYTING ALGEBRAS WITH OPERATORS
    ITURRIOZ, L
    JOURNAL OF SYMBOLIC LOGIC, 1979, 44 (03) : 449 - 449
  • [42] Anomalous symmetries end at the boundary
    Ryan Thorngren
    Yifan Wang
    Journal of High Energy Physics, 2021
  • [43] Anomalous symmetries end at the boundary
    Thorngren, Ryan
    Wang, Yifan
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
  • [44] Remarks on Villadsen algebras
    Elliott, George A.
    Li, Chun Guang
    Niu, Zhuang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (07)
  • [45] REMARKS ON SEGAL ALGEBRAS
    LEINERT, M
    MANUSCRIPTA MATHEMATICA, 1975, 16 (01) : 1 - 9
  • [46] Remarks on Effect Algebras
    Władysław A. Majewski
    Tomasz I. Tylec
    International Journal of Theoretical Physics, 2010, 49 : 3185 - 3191
  • [47] REMARKS ON BANACH ALGEBRAS
    SRINIVAS.K
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A8 - A8
  • [48] REMARKS ON TOPOLOGICAL ALGEBRAS
    Beilinson, A.
    MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (01) : 1 - 20
  • [49] Symmetries of Algebras Captured by Actions of Weak Hopf Algebras
    Calderon, Fabio
    Huang, Hongdi
    Wicks, Elizabeth
    Won, Robert
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (06) : 2217 - 2266
  • [50] Remarks on Effect Algebras
    Majewski, Wladyslaw A.
    Tylec, Tomasz I.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (12) : 3185 - 3191