Remarks on Anomalous Symmetries of C*-Algebras

被引:0
|
作者
Corey Jones
机构
[1] North Carolina State University,
来源
Communications in Mathematical Physics | 2021年 / 388卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a group G and ω∈Z3(G,U(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in Z^{3}(G, \text {U}(1))$$\end{document}, an ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-anomalous action on a C*-algebra B is a U(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {U}(1)$$\end{document}-linear monoidal functor between 2-groups [inline-graphic not available: see fulltext], where the latter denotes the 2-group of ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-automorphisms of B. The class [ω]∈H3(G,U(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\omega ]\in H^{3}(G, \text {U}(1))$$\end{document} is called the anomaly of the action. We show that for every n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and every finite group G, every anomaly can be realized on the stabilization of a commutative C*-algebra C(M)⊗K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(M)\otimes {\mathcal {K}}$$\end{document} for some closed connected n-manifold M. We also show that although there are no anomalous symmetries of Roe C*-algebras of coarse spaces, for every finite group G, every anomaly can be realized on the Roe corona C∗(X)/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}(X)/{\mathcal {K}}$$\end{document} of some bounded geometry metric space X with property A.
引用
收藏
页码:385 / 417
页数:32
相关论文
共 50 条