Remarks on Anomalous Symmetries of C*-Algebras

被引:0
|
作者
Corey Jones
机构
[1] North Carolina State University,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a group G and ω∈Z3(G,U(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in Z^{3}(G, \text {U}(1))$$\end{document}, an ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-anomalous action on a C*-algebra B is a U(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {U}(1)$$\end{document}-linear monoidal functor between 2-groups [inline-graphic not available: see fulltext], where the latter denotes the 2-group of ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-automorphisms of B. The class [ω]∈H3(G,U(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\omega ]\in H^{3}(G, \text {U}(1))$$\end{document} is called the anomaly of the action. We show that for every n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and every finite group G, every anomaly can be realized on the stabilization of a commutative C*-algebra C(M)⊗K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(M)\otimes {\mathcal {K}}$$\end{document} for some closed connected n-manifold M. We also show that although there are no anomalous symmetries of Roe C*-algebras of coarse spaces, for every finite group G, every anomaly can be realized on the Roe corona C∗(X)/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}(X)/{\mathcal {K}}$$\end{document} of some bounded geometry metric space X with property A.
引用
收藏
页码:385 / 417
页数:32
相关论文
共 50 条
  • [2] Anomalous symmetries of classifiable C*-algebras
    Evington, Samuel
    Pacheco, Sergio
    STUDIA MATHEMATICA, 2023, 270 (01) : 73 - 102
  • [3] Quantum Symmetries of Graph C*-algebras
    Schmidt, Simon
    Weber, Moritz
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (04): : 848 - 864
  • [4] Non-Hausdorff symmetries of C*-algebras
    Alcides Buss
    Ralf Meyer
    Chenchang Zhu
    Mathematische Annalen, 2012, 352 : 73 - 97
  • [5] Braided quantum symmetries of graph C*-algebras
    Bhattacharjee, Suvrajit
    Joardar, Soumalya
    Roy, Sutanu
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (13)
  • [6] Non-Hausdorff symmetries of C*-algebras
    Buss, Alcides
    Meyer, Ralf
    Zhu, Chenchang
    MATHEMATISCHE ANNALEN, 2012, 352 (01) : 73 - 97
  • [7] Quantum Symmetries of the Twisted Tensor Products of C*-Algebras
    Jyotishman Bhowmick
    Arnab Mandal
    Sutanu Roy
    Adam Skalski
    Communications in Mathematical Physics, 2019, 368 : 1051 - 1085
  • [8] CLASSIFICATION OF SYMMETRIES OF UHF C-STAR-ALGEBRAS
    FACK, T
    MARECHAL, O
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (03): : 496 - 523
  • [9] C∞-symmetries and non-solvable symmetry algebras
    Muriel, C
    Romero, JL
    IMA JOURNAL OF APPLIED MATHEMATICS, 2001, 66 (05) : 477 - 498
  • [10] Quantum Symmetries of the Twisted Tensor Products of C*-Algebras
    Bhowmick, Jyotishman
    Mandal, Arnab
    Roy, Sutanu
    Skalski, Adam
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 368 (03) : 1051 - 1085