The Dual Kaczmarz Algorithm

被引:0
|
作者
Anna Aboud
Emelie Curl
Steven N. Harding
Mary Vaughan
Eric S. Weber
机构
[1] Iowa State University,Department of Mathematics
来源
关键词
Kaczmarz algorithm; Effective sequence; Frame; Gram matrix; Hilbert space; 41A65; 65D15; 42C15; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
The Kaczmarz algorithm is an iterative method for solving a system of linear equations. It can be extended so as to reconstruct a vector x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} in a (separable) Hilbert space from the inner-products {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document}. The Kaczmarz algorithm defines a sequence of approximations from the sequence {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document}; these approximations only converge to x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} when {ϕn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\phi _{n}\}$\end{document} is effective. We dualize the Kaczmarz algorithm so that x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} can be obtained from {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document} by using a second sequence {ψn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\psi _{n}\}$\end{document} in the reconstruction. This allows for the recovery of x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} even when the sequence {ϕn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\phi _{n}\}$\end{document} is not effective; in particular, our dualization yields a reconstruction when the sequence {ϕn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\phi _{n}\}$\end{document} is almost effective. We also obtain some partial results characterizing when the sequence of approximations from {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document} using {ψn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\psi _{n}\}$\end{document} converges to x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document}, in which case {(ϕn,ψn)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{(\phi _{n}, \psi _{n})\}$\end{document} is called an effective pair.
引用
收藏
页码:133 / 148
页数:15
相关论文
共 50 条
  • [41] Single Acceleration Methods of the Kaczmarz Algorithm Regularized Modifications
    Sidorov, Yu. V.
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY [ICICT-2019], 2019, 154 : 319 - 326
  • [42] Kaczmarz Algorithm with Soft Constraints for User Interface Layout
    Jamil, Noreen
    Needell, Deanna
    Mueller, Johannes
    Lutteroth, Christof
    Weber, Gerald
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 818 - 824
  • [43] The randomized Kaczmarz algorithm with the probability distribution depending on the angle
    He, Songnian
    Dong, Qiao-Li
    Li, Xiaoxiao
    NUMERICAL ALGORITHMS, 2023, 93 (01) : 415 - 440
  • [44] A Note on the Behavior of the Randomized Kaczmarz Algorithm of Strohmer and Vershynin
    Yair Censor
    Gabor T. Herman
    Ming Jiang
    Journal of Fourier Analysis and Applications, 2009, 15 : 431 - 436
  • [45] Almost Sure Convergence of the Kaczmarz Algorithm with Random Measurements
    Xuemei Chen
    Alexander M. Powell
    Journal of Fourier Analysis and Applications, 2012, 18 : 1195 - 1214
  • [46] A Note on the Behavior of the Randomized Kaczmarz Algorithm of Strohmer and Vershynin
    Censor, Yair
    Herman, Gabor T.
    Jiang, Ming
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (04) : 431 - 436
  • [47] Accelerating Random Kaczmarz Algorithm Based on Clustering Information
    Li, Yujun
    Mo, Kaichun
    Ye, Haishan
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1823 - 1829
  • [48] A Modified Kaczmarz Algorithm for Computerized Tomographic Image Reconstruction
    Guo, Wei
    Chen, Hexin
    Geng, Weijie
    Lei, Lingyin
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 29 - +
  • [49] On the Kaczmarz algorithm of approximation in infinite-dimensional spaces
    Kwapien, S
    Mycielski, J
    STUDIA MATHEMATICA, 2001, 148 (01) : 75 - 86
  • [50] AN OPTIMAL SCHEDULED LEARNING RATE FOR A RANDOMIZED KACZMARZ ALGORITHM
    Marshall, Nicholas F.
    Mickelin, Oscar
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (01) : 312 - 330