The Dual Kaczmarz Algorithm

被引:0
|
作者
Anna Aboud
Emelie Curl
Steven N. Harding
Mary Vaughan
Eric S. Weber
机构
[1] Iowa State University,Department of Mathematics
来源
关键词
Kaczmarz algorithm; Effective sequence; Frame; Gram matrix; Hilbert space; 41A65; 65D15; 42C15; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
The Kaczmarz algorithm is an iterative method for solving a system of linear equations. It can be extended so as to reconstruct a vector x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} in a (separable) Hilbert space from the inner-products {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document}. The Kaczmarz algorithm defines a sequence of approximations from the sequence {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document}; these approximations only converge to x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} when {ϕn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\phi _{n}\}$\end{document} is effective. We dualize the Kaczmarz algorithm so that x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} can be obtained from {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document} by using a second sequence {ψn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\psi _{n}\}$\end{document} in the reconstruction. This allows for the recovery of x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} even when the sequence {ϕn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\phi _{n}\}$\end{document} is not effective; in particular, our dualization yields a reconstruction when the sequence {ϕn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\phi _{n}\}$\end{document} is almost effective. We also obtain some partial results characterizing when the sequence of approximations from {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document} using {ψn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\psi _{n}\}$\end{document} converges to x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document}, in which case {(ϕn,ψn)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{(\phi _{n}, \psi _{n})\}$\end{document} is called an effective pair.
引用
收藏
页码:133 / 148
页数:15
相关论文
共 50 条
  • [21] Kaczmarz Algorithm For Tikhonov Regularization Problem
    Ivanov, Andrey Aleksandrovich
    Zhdanov, Aleksandr Ivanovich
    APPLIED MATHEMATICS E-NOTES, 2013, 13 : 270 - 276
  • [22] Kaczmarz algorithm with relaxation in Hilbert space
    Szwarc, Ryszard
    Swiderski, Grzegorz
    STUDIA MATHEMATICA, 2013, 216 (03) : 237 - 243
  • [23] A Randomized Kaczmarz Algorithm with Exponential Convergence
    Thomas Strohmer
    Roman Vershynin
    Journal of Fourier Analysis and Applications, 2009, 15 : 262 - 278
  • [24] An accelerated randomized extended Kaczmarz algorithm
    Xiang, Xu
    Liu, Xu
    Tan, Wentang
    Dai, Xiang
    7TH INTERNATIONAL CONFERENCE ON APPLIED PHYSICS AND MATHEMATICS (ICAPM 2017), 2017, 814
  • [25] A Generalized Kaczmarz Algorithm with Projection Adjustment
    Lin, Chuan
    Zang, Jiefeng
    Qing, Anyong
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 951 - 951
  • [26] Extended Kaczmarz Algorithm with Projection Adjustment
    Lin, Chuan
    Zang, Jiefeng
    Qing, Anyong
    2015 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2015,
  • [27] A stochastic Kaczmarz algorithm for network tomography
    Thoppe, Gugan
    Borkar, Vivek
    Manjunath, D.
    AUTOMATICA, 2014, 50 (03) : 910 - 914
  • [28] A Randomized Distributed Kaczmarz Algorithm and Anomaly Detection
    Keinert, Fritz
    Weber, Eric S.
    AXIOMS, 2022, 11 (03)
  • [29] Exponential Convergence of a Randomized Kaczmarz Algorithm with Relaxation
    Cai, Yong
    Zhao, Yang
    Tang, Yuchao
    PROCEEDINGS OF THE 2011 2ND INTERNATIONAL CONGRESS ON COMPUTER APPLICATIONS AND COMPUTATIONAL SCIENCE, VOL 2, 2012, 145 : 467 - +
  • [30] Constrained Kaczmarz extended algorithm for image reconstruction
    Popa, Constantin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2247 - 2267