The Dual Kaczmarz Algorithm

被引:0
|
作者
Anna Aboud
Emelie Curl
Steven N. Harding
Mary Vaughan
Eric S. Weber
机构
[1] Iowa State University,Department of Mathematics
来源
关键词
Kaczmarz algorithm; Effective sequence; Frame; Gram matrix; Hilbert space; 41A65; 65D15; 42C15; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
The Kaczmarz algorithm is an iterative method for solving a system of linear equations. It can be extended so as to reconstruct a vector x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} in a (separable) Hilbert space from the inner-products {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document}. The Kaczmarz algorithm defines a sequence of approximations from the sequence {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document}; these approximations only converge to x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} when {ϕn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\phi _{n}\}$\end{document} is effective. We dualize the Kaczmarz algorithm so that x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} can be obtained from {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document} by using a second sequence {ψn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\psi _{n}\}$\end{document} in the reconstruction. This allows for the recovery of x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document} even when the sequence {ϕn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\phi _{n}\}$\end{document} is not effective; in particular, our dualization yields a reconstruction when the sequence {ϕn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\phi _{n}\}$\end{document} is almost effective. We also obtain some partial results characterizing when the sequence of approximations from {〈x,ϕn〉}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\langle x, \phi _{n} \rangle \}$\end{document} using {ψn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\psi _{n}\}$\end{document} converges to x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x$\end{document}, in which case {(ϕn,ψn)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{(\phi _{n}, \psi _{n})\}$\end{document} is called an effective pair.
引用
收藏
页码:133 / 148
页数:15
相关论文
共 50 条
  • [1] The Dual Kaczmarz Algorithm
    Aboud, Anna
    Curl, Emelie
    Harding, Steven N.
    Vaughan, Mary
    Weber, Eric S.
    ACTA APPLICANDAE MATHEMATICAE, 2020, 165 (01) : 133 - 148
  • [2] THE DUAL RANDOMIZED KACZMARZ ALGORITHM
    He, Songnian
    Wang, Ziting
    Dong, Qiao-li
    Yao, Yonghong
    Tang, Yuchao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (04) : 779 - 786
  • [3] KACZMARZ ALGORITHM
    ROGERS, E
    INTERNATIONAL JOURNAL OF CONTROL, 1993, 57 (06) : 1261 - 1261
  • [4] KACZMARZ ALGORITHM AND FRAMES
    Czaja, Wojciech
    Tanis, James H.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2013, 11 (05)
  • [5] GENERALIZED KACZMARZ ALGORITHM
    AVEDYAN, ED
    TSYPKIN, YZ
    AUTOMATION AND REMOTE CONTROL, 1979, 40 (01) : 55 - 59
  • [6] DYNAMIC KACZMARZ ALGORITHM
    OKRUG, AI
    AUTOMATION AND REMOTE CONTROL, 1981, 42 (01) : 57 - 61
  • [7] On the Randomized Kaczmarz Algorithm
    Dai, Liang
    Soltanalian, Mojtaba
    Pelckmans, Kristiaan
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (03) : 330 - 333
  • [8] A Sparse Randomized Kaczmarz Algorithm
    Mansour, Hassan
    Yilmaz, Ozgur
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 621 - 621
  • [9] Kaczmarz algorithm in Hilbert space
    Haller, R
    Szwarc, R
    STUDIA MATHEMATICA, 2005, 169 (02) : 123 - 132
  • [10] On the Exponential Convergence of the Kaczmarz Algorithm
    Dai, Liang
    Schon, Thomas B.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) : 1571 - 1574