The Heun–Askey–Wilson Algebra and the Heun Operator of Askey–Wilson Type

被引:0
|
作者
Pascal Baseilhac
Satoshi Tsujimoto
Luc Vinet
Alexei Zhedanov
机构
[1] Université de Tours,Institut Denis
[2] Université d’Orléans Parc de Grammont,Poisson CNRS/UMR 7013
[3] Kyoto University,Department of Applied Mathematics and Physics Graduate School of Informatics
[4] Université de Montréal,Centre de Recherches Mathématiques
[5] Renmin University of China,School of Mathematics
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Heun–Askey–Wilson algebra is introduced through generators {X,W}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\textsf {X}},{\textsf {W}}\}$$\end{document} and relations. These relations can be understood as an extension of the usual Askey–Wilson ones. A central element is given, and a canonical form of the Heun–Askey–Wilson algebra is presented. A homomorphism from the Heun–Askey–Wilson algebra to the Askey–Wilson one is identified. On the vector space of the polynomials in the variable x=z+z-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=z+z^{-1}$$\end{document}, the Heun operator of Askey–Wilson type realizing W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {W}}$$\end{document} can be characterized as the most general second-order q-difference operator in the variable z that maps polynomials of degree n in x=z+z-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=z+z^{-1}$$\end{document} into polynomials of degree n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}.
引用
收藏
页码:3091 / 3112
页数:21
相关论文
共 50 条
  • [41] Bootstrapping and Askey-Wilson polynomials
    Kim, Jang Soo
    Stanton, Dennis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 501 - 520
  • [42] Moments of Askey-Wilson polynomials
    Kim, Jang Soo
    Stanton, Dennis
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 125 : 113 - 145
  • [43] THE ASSOCIATED ASKEY-WILSON POLYNOMIALS
    ISMAIL, MEH
    RAHMAN, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 328 (01) : 201 - 237
  • [44] Finite-Dimensional Irreducible Modules of the Universal Askey–Wilson Algebra
    Hau-Wen Huang
    Communications in Mathematical Physics, 2015, 340 : 959 - 984
  • [45] Multi-indexed Wilson and Askey-Wilson polynomials
    Odake, Satoru
    Sasaki, Ryu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (04)
  • [46] Multivariable Askey–Wilson function and bispectrality
    Jeffrey S. Geronimo
    Plamen Iliev
    The Ramanujan Journal, 2011, 24 : 273 - 287
  • [47] Wiman–Valiron Theory for a Polynomial Series Based on the Askey–Wilson Operator
    Kam Hang Cheng
    Yik-Man Chiang
    Constructive Approximation, 2021, 54 : 259 - 294
  • [48] Taylor series for the Askey-Wilson operator and classical summation formulas
    Lopez, B
    Marco, JM
    Parcet, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2259 - 2270
  • [49] A Taylor expansion theorem for an elliptic extension of the Askey-Wilson operator
    Schlosser, Michael J.
    SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2008, 471 : 175 - 186
  • [50] Little and big q-Jacobi polynomials and the Askey-Wilson algebra
    Baseilhac, Pascal
    Martin, Xavier
    Vinet, Luc
    Zhedanov, Alexei
    RAMANUJAN JOURNAL, 2020, 51 (03): : 629 - 648