The Heun–Askey–Wilson Algebra and the Heun Operator of Askey–Wilson Type

被引:0
|
作者
Pascal Baseilhac
Satoshi Tsujimoto
Luc Vinet
Alexei Zhedanov
机构
[1] Université de Tours,Institut Denis
[2] Université d’Orléans Parc de Grammont,Poisson CNRS/UMR 7013
[3] Kyoto University,Department of Applied Mathematics and Physics Graduate School of Informatics
[4] Université de Montréal,Centre de Recherches Mathématiques
[5] Renmin University of China,School of Mathematics
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Heun–Askey–Wilson algebra is introduced through generators {X,W}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\textsf {X}},{\textsf {W}}\}$$\end{document} and relations. These relations can be understood as an extension of the usual Askey–Wilson ones. A central element is given, and a canonical form of the Heun–Askey–Wilson algebra is presented. A homomorphism from the Heun–Askey–Wilson algebra to the Askey–Wilson one is identified. On the vector space of the polynomials in the variable x=z+z-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=z+z^{-1}$$\end{document}, the Heun operator of Askey–Wilson type realizing W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {W}}$$\end{document} can be characterized as the most general second-order q-difference operator in the variable z that maps polynomials of degree n in x=z+z-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=z+z^{-1}$$\end{document} into polynomials of degree n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}.
引用
收藏
页码:3091 / 3112
页数:21
相关论文
共 50 条
  • [31] On the q-translation associated with the Askey-Wilson operator
    Fethi Bouzaffour
    Advances in Difference Equations, 2012
  • [32] On the generalized Askey-Wilson polynomials
    Alvarez-Nodarse, R.
    Adiguzel, R. Sevinik
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 32 - 43
  • [33] Expansions in the Askey-Wilson polynomials
    Ismail, Mourad E. H.
    Stanton, Dennis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 664 - 674
  • [34] The Askey-Wilson function transform
    Koelink, E
    Stokman, JV
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (22) : 1203 - 1227
  • [35] ON THE ASKEY-WILSON AND ROGERS POLYNOMIALS
    ISMAIL, MEH
    STANTON, D
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (05): : 1025 - 1045
  • [36] Little and big q-Jacobi polynomials and the Askey–Wilson algebra
    Pascal Baseilhac
    Xavier Martin
    Luc Vinet
    Alexei Zhedanov
    The Ramanujan Journal, 2020, 51 : 629 - 648
  • [37] Befriending Askey-Wilson polynomials
    Szablowski, Pawel J.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2014, 17 (03)
  • [38] A CHARACTERIZATION OF ASKEY-WILSON POLYNOMIALS
    Nangho, Maurice Kenfack
    Jordaan, Kerstin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (06) : 2465 - 2480
  • [39] Askey-Wilson type functions with bound states
    Haine, Luc
    Iliev, Plamen
    RAMANUJAN JOURNAL, 2006, 11 (03): : 285 - 329
  • [40] The Askey-Wilson Integral and Extensions
    Chu, Wenchang
    MATHEMATICS, 2023, 11 (07)