Toward a vertex operator construction of quantum affine algebras

被引:0
|
作者
S. E. Klevtsov
机构
[1] Institute for Theoretical and Experimental Physics,
[2] Moscow State University,undefined
来源
关键词
quantum group; quantum affine algebra; free field theory; minimal model; Serre relations;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a construction of the quantum-deformed affine algebras using vertex operators in the free field theory. We prove the Serre relations for the Borel subalgebras of quantum affine algebras; in particular, we consider the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\widehat{sl}_2 $$ \end{document} case in detail. We also construct the generators corresponding to the positive roots of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\widehat{sl}_2 $$ \end{document}.
引用
收藏
页码:201 / 208
页数:7
相关论文
共 50 条
  • [21] Construction and classification of holomorphic vertex operator algebras
    van Ekeren, Jethro
    Moller, Sven
    Scheithauer, Nils R.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 2020 (759): : 61 - 99
  • [22] Construction and classification of holomorphic vertex operator algebras
    van Ekeren, Jethro
    Moeller, Sven
    Scheithauer, Nils R.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 : 61 - 99
  • [23] Affine Vertex Operator Algebras and Modular Linear Differential Equations
    Arike, Yusuke
    Kaneko, Masanobu
    Nagatomo, Kiyokazu
    Sakai, Yuichi
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (05) : 693 - 718
  • [24] First cohomologies of affine, Virasoro, and lattice vertex operator algebras
    Fei Qi
    Letters in Mathematical Physics, 2022, 112
  • [25] Vertex operator algebras associated to modified regular representations of affine Lie algebras
    Zhu, Minxian
    ADVANCES IN MATHEMATICS, 2008, 219 (05) : 1513 - 1547
  • [26] Affine Vertex Operator Algebras and Modular Linear Differential Equations
    Yusuke Arike
    Masanobu Kaneko
    Kiyokazu Nagatomo
    Yuichi Sakai
    Letters in Mathematical Physics, 2016, 106 : 693 - 718
  • [27] First cohomologies of affine, Virasoro, and lattice vertex operator algebras
    Qi, Fei
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (03)
  • [28] FIXED POINTS SUBALGEBRA OF VERTEX OPERATOR ALGEBRAS ASSOCIATED TO AFFINE ALGEBRAS OF TYPE A
    Zhou, Zhongguo
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3557 - 3569
  • [29] FERMIONIC CONSTRUCTION OF VERTEX OPERATORS FOR TWISTED AFFINE ALGEBRAS
    FRAPPAT, L
    SCIARRINO, A
    SORBA, P
    NUCLEAR PHYSICS B, 1988, 305 (02) : 164 - 198
  • [30] VERTEX OPERATOR ALGEBRAS ASSOCIATED TO TYPE G AFFINE LIE ALGEBRAS II
    Axtell, Jonathan D.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (02) : 803 - 830