Affine Vertex Operator Algebras and Modular Linear Differential Equations

被引:15
|
作者
Arike, Yusuke [1 ]
Kaneko, Masanobu [2 ]
Nagatomo, Kiyokazu [3 ]
Sakai, Yuichi [4 ]
机构
[1] Univ Tsukuba, Fac Pure & Appl Sci, Div Math, Tsukuba, Ibaraki 3058571, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[3] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Toyonaka, Osaka 5600043, Japan
[4] Yokomizo 3012-2, Fukuoka 8300405, Japan
关键词
affine vertex operator algebra; modular invariance; modular linear differential equation; 2-dimensional conformal field theory; VIRASORO ALGEBRA; LIE-ALGEBRAS; INVARIANCE; CHARACTERS; FORMS;
D O I
10.1007/s11005-016-0837-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.
引用
收藏
页码:693 / 718
页数:26
相关论文
共 50 条
  • [1] Affine Vertex Operator Algebras and Modular Linear Differential Equations
    Yusuke Arike
    Masanobu Kaneko
    Kiyokazu Nagatomo
    Yuichi Sakai
    Letters in Mathematical Physics, 2016, 106 : 693 - 718
  • [2] Vertex operator algebras, minimal models, and modular linear differential equations of order 4
    Arike, Yusuke
    Nagatomo, Kiyokazu
    Sakai, Yuichi
    Zagier, Don
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (04) : 1347 - 1373
  • [3] Vertex operator algebras, Higgs branches, and modular differential equations
    Christopher Beem
    Leonardo Rastelli
    Journal of High Energy Physics, 2018
  • [4] Vertex operator algebras, Higgs branches, and modular differential equations
    Beem, Christopher
    Rastelli, Leonardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [5] Modular Virasoro vertex algebras and affine vertex algebras
    Jiao, Xiangyu
    Li, Haisheng
    Mu, Qiang
    JOURNAL OF ALGEBRA, 2019, 519 : 273 - 311
  • [6] Modular Forms and Second Order Ordinary Differential Equations: Applications to Vertex Operator Algebras
    Kaneko, Masanobu
    Nagatomo, Kiyokazu
    Sakai, Yuichi
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (04) : 439 - 453
  • [7] Modular Forms and Second Order Ordinary Differential Equations: Applications to Vertex Operator Algebras
    Masanobu Kaneko
    Kiyokazu Nagatomo
    Yuichi Sakai
    Letters in Mathematical Physics, 2013, 103 : 439 - 453
  • [8] Defects, modular differential equations, and free field realization of N=4 vertex operator algebras
    Pan, Yiwen
    Wang, Yufan
    Zheng, Haocong
    PHYSICAL REVIEW D, 2022, 105 (08)
  • [9] Vertex operator algebras and representations of affine Lie algebras
    Meurman, A
    Primc, M
    ACTA APPLICANDAE MATHEMATICAE, 1996, 44 (1-2) : 207 - 215
  • [10] Vertex operator algebras and modular invariance
    Miyamoto, Masahiko
    VERTEX OPERATOR ALGEBRAS, NUMBER THEORY AND RELATED TOPICS, 2020, 753 : 233 - 250