On T-groups, supersolvable groups, and maximal subgroups

被引:0
|
作者
Gil Kaplan
机构
[1] The Academic College of Tel-Aviv-Yaffo,School of Computer Sciences
来源
Archiv der Mathematik | 2011年 / 96卷
关键词
20E15; 20E28; -groups; Non-normal maximal subgroups; Lattice generated by the maximal subgroups; Supersolvable groups; -groups;
D O I
暂无
中图分类号
学科分类号
摘要
A group is called a T-group if all its subnormal subgroups are normal. Finite T-groups have been widely studied since the seminal paper of Gaschütz (J. Reine Angew. Math. 198 (1957), 87–92), in which he described the structure of finite solvable T-groups. We call a finite group G an NNM-group if each non-normal subgroup of G is contained in a non-normal maximal subgroup of G. Let G be a finite group. Using the concept of NNM-groups, we give a necessary and sufficient condition for G to be a solvable T-group (Theorem 1), and sufficient conditions for G to be supersolvable (Theorems 5, 7 and Corollary 6).
引用
收藏
页码:19 / 25
页数:6
相关论文
共 50 条
  • [21] EFFECTS OF TRAINERS ON THEIR T-GROUPS
    BOLMAN, L
    JOURNAL OF APPLIED BEHAVIORAL SCIENCE, 1971, 7 (03): : 309 - &
  • [22] T-GROUPS, TESTS, AND TENSION
    JOHNSON, DW
    KAVANAGH, JA
    LUBIN, B
    SMALL GROUP BEHAVIOR, 1973, 4 (01): : 81 - 88
  • [23] On a Generalisation of Finite T-Groups
    Zhang, Chi
    Guo, Wenbin
    Liu, A-Ming
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (01) : 153 - 162
  • [24] Determination of Certain t-Groups
    Laxmi Kant Mishra
    B. K. Sharma
    National Academy Science Letters, 2019, 42 : 359 - 364
  • [25] THE FRATTINI ARGUMENT AND T-GROUPS
    BREWSTER, B
    SEHGAL, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (02) : 239 - 245
  • [26] CHARACTERIZATION OF MINIMAL FINITE-GROUPS, NOT T-GROUPS
    DANDREA, AB
    RICERCHE DI MATEMATICA, 1972, 21 (02) : 235 - 243
  • [27] HOW PSYCHOLOGICALLY DANGEROUS ARE T-GROUPS AND ENCOUNTER GROUPS
    COOPER, CL
    HUMAN RELATIONS, 1975, 28 (03) : 249 - 260
  • [28] MAXIMAL SUBGROUPS OF SOLVABLE GROUPS
    BUCHTHAL, DC
    ARCHIV DER MATHEMATIK, 1975, 26 (03) : 234 - 235
  • [29] On Maximal Subgroups of Nonsolvable Groups
    S. Dong
    L. Miao
    J. Zhang
    J. Zhao
    Siberian Mathematical Journal, 2022, 63 : 476 - 484
  • [30] ON MAXIMAL SUBGROUPS OF NONSOLVABLE GROUPS
    Dong, S.
    Miao, L.
    Zhang, J.
    Zhao, J.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (03) : 476 - 484