On a Generalisation of Finite T-Groups

被引:6
|
作者
Zhang, Chi [1 ]
Guo, Wenbin [2 ,3 ]
Liu, A-Ming [4 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] Hainan Univ, Sch Sci, Haikou 570228, Hainan, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[4] Hainan Univ, Sch Sci, Haikou 570228, Hainan, Peoples R China
关键词
Finite groups; sigma-groups; Generalised T -groups; sigma-subnormal; The condition R-sigma i; SIGMA-PERMUTABLE SUBGROUPS;
D O I
10.1007/s40304-021-00240-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let sigma = {sigma(i)vertical bar i is an element of I} be some partition of all primes P and G a finite group. A subgroup H of G is said to be sigma-subnormal in G if there exists a subgroup chain H = H-0 <= H-1 <= ... <= H-n = G such that either Hi-1 is normal in H-i or H-i /(Hi-1)(Hi) is a finite sigma(j)-group for some j is an element of I for i = 1, ... , n. We call a finite group G a T-sigma-group if every s-subnormal subgroup is normal in G. In this paper, we analyse the structure of the T-sigma-groups and give some characterisations of the T-sigma-groups.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [1] On a Generalisation of Finite T-Groups
    Chi Zhang
    Wenbin Guo
    A-Ming Liu
    Communications in Mathematics and Statistics, 2022, 10 : 153 - 162
  • [2] T-groups, polycyclic groups, and finite quotients
    Heineken, Hermann
    Beidleman, James C.
    ARCHIV DER MATHEMATIK, 2014, 103 (01) : 21 - 26
  • [3] On a class of locally finite T-groups
    Ballester-Bolinches, Adolfo
    Heineken, Hermann
    Pedraza, Tatiana
    FORUM MATHEMATICUM, 2007, 19 (02) : 297 - 306
  • [4] T-groups, polycyclic groups, and finite quotients
    Hermann Heineken
    James C. Beidleman
    Archiv der Mathematik, 2014, 103 : 21 - 26
  • [5] On finite T-groups and the Wielandt subgroup
    Kaplan, Gil
    JOURNAL OF GROUP THEORY, 2011, 14 (06) : 855 - 863
  • [6] A class of generalised finite T-groups
    Ballester-Bolinches, A.
    Feldman, A. D.
    Pedraza-Aguilera, M. C.
    Ragland, M. F.
    JOURNAL OF ALGEBRA, 2011, 333 (01) : 128 - 138
  • [7] SUBGROUPS OF FINITE INDEX IN T-GROUPS
    HEINEKEN, H
    LENNOX, JC
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4B (03): : 829 - 841
  • [8] CHARACTERIZATION OF MINIMAL FINITE-GROUPS, NOT T-GROUPS
    DANDREA, AB
    RICERCHE DI MATEMATICA, 1972, 21 (02) : 235 - 243
  • [9] On two classes of generalised finite T-groups
    Ballester-Bolinches, Adolfo
    Pedraza-Aguilera, M. Carmen
    Perez-Calabuig, Vicent
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [10] A Robinson description of finite PσT-groups
    Zhang, Xin-Fang
    Guo, Wenbin
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF ALGEBRA, 2023, 631 : 218 - 235