Lagrangian-Perfect Hypergraphs

被引:0
|
作者
Zilong Yan
Yuejian Peng
机构
[1] Hunan University,School of Mathematics
来源
Annals of Combinatorics | 2023年 / 27卷
关键词
Hypergraph Lagrangian; Lagrangian density; 05C35; 05C65;
D O I
暂无
中图分类号
学科分类号
摘要
Hypergraph Lagrangian function has been a helpful tool in several celebrated results in extremal combinatorics. Let G be an r-uniform graph on [n] and let x=(x1,…,xn)∈[0,∞)n.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{x}}=(x_1,\ldots ,x_n) \in [0,\infty )^n.$$\end{document} The graph Lagrangian function is defined to be λ(G,x)=∑e∈E(G)∏i∈exi.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (G,{\textbf{x}})=\sum _{e \in E(G)}\prod _{i\in e}x_{i}.$$\end{document} The graph Lagrangian is defined as λ(G)=max{λ(G,x):x∈Δ},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (G)=\max \{\lambda (G, {\textbf{x}}): {\textbf{x}} \in \Delta \},$$\end{document} where Δ={x=(x1,x2,…,xn)∈[0,1]n:x1+x2+⋯+xn=1}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =\{{\textbf{x}}=(x_1,x_2,\ldots ,x_n) \in [0, 1]^{n}: x_1+x_2+\dots +x_n =1 \}.$$\end{document} The Lagrangian density πλ(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\lambda }(F)$$\end{document} of an r-graph F is defined to be πλ(F)=sup{r!λ(G):Gdoes not containF}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\lambda }(F)=\sup \{r! \lambda (G): G \text { does not contain }F \}.$$\end{document} Sidorenko (Combinatorica 9:207–215, 1989) showed that the Lagrangian density of an r-uniform hypergraph F is the same as the Turán density of the extension of F. Therefore, determining the Lagrangian density of a hypergraph will add a result to the very few known results on Turán densities of hypergraphs. For an r-uniform graph H with t vertices, πλ(H)≥r!λ(Kt-1r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\lambda }(H)\ge r!\lambda {(K_{t-1}^r)}$$\end{document} since Kt-1r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{t-1}^r$$\end{document} (the complete r-uniform graph with t-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t-1$$\end{document} vertices) does not contain a copy of H. We say that an r-uniform hypergraph H with t vertices is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect if the equality πλ(H)=r!λ(Kt-1r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\lambda }(H)= r!\lambda {(K_{t-1}^r)}$$\end{document} holds. A fundamental theorem of Motzkin and Straus implies that all 2-uniform graphs are λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect. It is interesting to understand the λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect property for r≥3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3.$$\end{document} Our first result is to show that the disjoint union of a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect 3-graph and S2,t={123,124,125,126,…,12(t+2)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{2,t}=\{123,124,125,126,\ldots ,12(t+2)\}$$\end{document} is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect, this result implies several previous results: Taking H to be the 3-graph spanned by one edge and t=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=1,$$\end{document} we obtain the result by Hefetz and Keevash (J Comb Theory Ser A 120:2020–2038, 2013) that a 3-uniform matching of size 2 is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect. Doing it repeatedly, we obtain the result in Jiang et al. (Eur J Comb 73:20–36, 2018) that any 3-uniform matching is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect. Taking H to be the 3-uniform linear path of length 2 or 3 and t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=1$$\end{document} repeatedly, we obtain the results in Hu et al. (J Comb Des 28:207–223, 2020). Earlier results indicate that K43-={123,124,134}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4^{3-}=\{123, 124, 134\}$$\end{document} and F5={123,124,345}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_5=\{123, 124, 345\}$$\end{document} are not λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect, we show that the disjoint union of K43-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4^{3-}$$\end{document} (or F5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_5$$\end{document}) and S2,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{2,t}$$\end{document} are λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect. Furthermore, we show the disjoint union of a 3-uniform hypergraph H and S2,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{2,t}$$\end{document} is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect if t is large. We also give an irrational Lagrangian density of a family of four 3-uniform hypergraphs.
引用
收藏
页码:957 / 978
页数:21
相关论文
共 50 条
  • [31] Nearly perfect matchings in regular simple hypergraphs
    Noga Alon
    Jeong-Han Kim
    Joel Spencer
    Israel Journal of Mathematics, 1997, 100 : 171 - 187
  • [32] Perfect Matchings in Balanced Hypergraphs – A Combinatorial Approach
    Andreas Huck
    Eberhard Triesch
    Combinatorica, 2002, 22 : 409 - 416
  • [33] PERFECT MATCHINGS IN HYPERGRAPHS AND THE ERDOS MATCHING CONJECTURE
    Han, Jie
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1351 - 1357
  • [34] The Complexity of Perfect Matching Problems on Dense Hypergraphs
    Karpinski, Marek
    Rucinski, Andrzej
    Szymanska, Edyta
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 626 - +
  • [35] A Note on the Lagrangian of Linear 3-Uniform Hypergraphs
    Hu, Sinan
    Wu, Biao
    SYMMETRY-BASEL, 2022, 14 (07):
  • [36] RAINBOW PERFECT MATCHINGS FOR 4-UNIFORM HYPERGRAPHS
    Hongliang, Lu
    Yan, Wang
    Xingxing, Yu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1645 - 1662
  • [37] Near Perfect Matchings in k-Uniform Hypergraphs
    Han, Jie
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (05): : 723 - 732
  • [38] Perfect matching in bipartite hypergraphs subject to a demand graph
    Lior Aronshtam
    Hagai Ilani
    Elad Shufan
    Annals of Operations Research, 2023, 321 : 39 - 48
  • [39] Polynomial-time perfect matchings in dense hypergraphs
    Keevash, Peter
    Knox, Fiachra
    Mycroft, Richard
    ADVANCES IN MATHEMATICS, 2015, 269 : 265 - 334
  • [40] Disjoint perfect matchings in 3-uniform hypergraphs
    Lu, Hongliang
    Yu, Xingxing
    Zhang, Li
    JOURNAL OF GRAPH THEORY, 2018, 88 (02) : 284 - 293