Lagrangian-Perfect Hypergraphs

被引:0
|
作者
Zilong Yan
Yuejian Peng
机构
[1] Hunan University,School of Mathematics
来源
Annals of Combinatorics | 2023年 / 27卷
关键词
Hypergraph Lagrangian; Lagrangian density; 05C35; 05C65;
D O I
暂无
中图分类号
学科分类号
摘要
Hypergraph Lagrangian function has been a helpful tool in several celebrated results in extremal combinatorics. Let G be an r-uniform graph on [n] and let x=(x1,…,xn)∈[0,∞)n.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{x}}=(x_1,\ldots ,x_n) \in [0,\infty )^n.$$\end{document} The graph Lagrangian function is defined to be λ(G,x)=∑e∈E(G)∏i∈exi.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (G,{\textbf{x}})=\sum _{e \in E(G)}\prod _{i\in e}x_{i}.$$\end{document} The graph Lagrangian is defined as λ(G)=max{λ(G,x):x∈Δ},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (G)=\max \{\lambda (G, {\textbf{x}}): {\textbf{x}} \in \Delta \},$$\end{document} where Δ={x=(x1,x2,…,xn)∈[0,1]n:x1+x2+⋯+xn=1}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =\{{\textbf{x}}=(x_1,x_2,\ldots ,x_n) \in [0, 1]^{n}: x_1+x_2+\dots +x_n =1 \}.$$\end{document} The Lagrangian density πλ(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\lambda }(F)$$\end{document} of an r-graph F is defined to be πλ(F)=sup{r!λ(G):Gdoes not containF}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\lambda }(F)=\sup \{r! \lambda (G): G \text { does not contain }F \}.$$\end{document} Sidorenko (Combinatorica 9:207–215, 1989) showed that the Lagrangian density of an r-uniform hypergraph F is the same as the Turán density of the extension of F. Therefore, determining the Lagrangian density of a hypergraph will add a result to the very few known results on Turán densities of hypergraphs. For an r-uniform graph H with t vertices, πλ(H)≥r!λ(Kt-1r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\lambda }(H)\ge r!\lambda {(K_{t-1}^r)}$$\end{document} since Kt-1r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{t-1}^r$$\end{document} (the complete r-uniform graph with t-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t-1$$\end{document} vertices) does not contain a copy of H. We say that an r-uniform hypergraph H with t vertices is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect if the equality πλ(H)=r!λ(Kt-1r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\lambda }(H)= r!\lambda {(K_{t-1}^r)}$$\end{document} holds. A fundamental theorem of Motzkin and Straus implies that all 2-uniform graphs are λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect. It is interesting to understand the λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect property for r≥3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3.$$\end{document} Our first result is to show that the disjoint union of a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect 3-graph and S2,t={123,124,125,126,…,12(t+2)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{2,t}=\{123,124,125,126,\ldots ,12(t+2)\}$$\end{document} is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect, this result implies several previous results: Taking H to be the 3-graph spanned by one edge and t=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=1,$$\end{document} we obtain the result by Hefetz and Keevash (J Comb Theory Ser A 120:2020–2038, 2013) that a 3-uniform matching of size 2 is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect. Doing it repeatedly, we obtain the result in Jiang et al. (Eur J Comb 73:20–36, 2018) that any 3-uniform matching is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect. Taking H to be the 3-uniform linear path of length 2 or 3 and t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=1$$\end{document} repeatedly, we obtain the results in Hu et al. (J Comb Des 28:207–223, 2020). Earlier results indicate that K43-={123,124,134}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4^{3-}=\{123, 124, 134\}$$\end{document} and F5={123,124,345}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_5=\{123, 124, 345\}$$\end{document} are not λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect, we show that the disjoint union of K43-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4^{3-}$$\end{document} (or F5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_5$$\end{document}) and S2,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{2,t}$$\end{document} are λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect. Furthermore, we show the disjoint union of a 3-uniform hypergraph H and S2,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{2,t}$$\end{document} is λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-perfect if t is large. We also give an irrational Lagrangian density of a family of four 3-uniform hypergraphs.
引用
收藏
页码:957 / 978
页数:21
相关论文
共 50 条
  • [21] ON PERFECT MATCHINGS AND TILINGS IN UNIFORM HYPERGRAPHS
    Han, Jie
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 919 - 932
  • [22] Finding Perfect Matchings in Dense Hypergraphs
    Han, Jie
    Keevash, Peter
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 2366 - 2377
  • [24] Perfect Matchings in Random Sparsifications of Dirac Hypergraphs
    Kang, Dong Yeap
    Kelly, Tom
    Kuhn, Daniela
    Osthus, Deryk
    Pfenninger, Vincent
    COMBINATORICA, 2024, 44 (06) : 1233 - 1266
  • [25] Almost perfect matchings in random uniform hypergraphs
    Krivelevich, M
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 259 - 263
  • [26] Perfect matchings in balanced hypergraphs - A combinatorial approach
    Huck, A
    Triesch, E
    COMBINATORICA, 2002, 22 (03) : 409 - 416
  • [27] Perfect codes in m-Cayley hypergraphs
    Wannatong, Kantapong
    Meemark, Yotsanan
    DISCRETE APPLIED MATHEMATICS, 2024, 358 : 105 - 111
  • [28] Perfect matchings in 4-uniform hypergraphs
    Khan, Imdadullah
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 333 - 366
  • [29] The complexity of perfect matchings and packings in dense hypergraphs
    Han, Jie
    Treglown, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 141 : 72 - 104
  • [30] Nearly perfect matchings in regular simple hypergraphs
    Alon, N
    Kim, JH
    Spencer, J
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) : 171 - 187