Topological entropy of continuous self-maps on a graph

被引:0
|
作者
Juan Luis García Guirao
Jaume Llibre
Wei Gao
机构
[1] Universidad Politécnica de Cartagena,Departamento de Matemática Aplicada y Estadística
[2] Hospital de Marina,Departament de Matemàtiques
[3] Universitat Autònoma de Barcelona,School of Information Science and Technology
[4] Yunnan Normal University,undefined
来源
关键词
Topological graph; Discrete dynamical systems; Lefschetz numbers; Lefschetz zeta function; Periodic point; Period; Topological entropy; 37E25; 37C25; 37C30;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph and f be a continuous self-map on G. Using the Lefschetz zeta function of f, we provide a sufficient condition in order that f has positive topological entropy. Moreover, for some classes of graphs we improve this condition making it easier to check.
引用
收藏
相关论文
共 50 条
  • [31] DYNAMICS OF THE ITERATION OPERATOR ON THE SPACE OF CONTINUOUS SELF-MAPS
    Veerapazham, Murugan
    Gopalakrishna, Chaitanya
    Zhang, Weinian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (01) : 217 - 229
  • [32] A note on the continuous self-maps of the ladder system space
    Claudia Correa
    Daniel V. Tausk
    Acta Mathematica Hungarica, 2013, 141 : 78 - 83
  • [33] Topological invariants for semigroups of holomorphic self-maps of the unit disk
    Bracci, Filippo
    Contreras, Manuel D.
    Diaz-Madrigal, Santiago
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (01): : 78 - 99
  • [34] A note on the continuous self-maps of the ladder system space
    Correa, C.
    Tausk, D. V.
    ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) : 78 - 83
  • [35] Minimizing topological entropy for continuous maps on graphs
    Alsedà, LL
    Mañosas, F
    Mumbrú, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1559 - 1576
  • [36] Estimates of topological entropy of continuous maps with applications
    Yang, Xiao-Song
    Bai, Xiaoming
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2006, 2006
  • [37] A note on the periodic orbits and topological entropy of graph maps
    Alsedà, LL
    Juher, D
    Mumbrú, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (10) : 2941 - 2946
  • [38] Topological Entropy and Special α-Limit Points of Graph Maps
    Sun, Taixiang
    Su, Guangwang
    Liang, Hailan
    He, Qiuli
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [39] SELF-MAPS OF BU
    CLARKE, F
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1981, 89 (MAY) : 491 - 500
  • [40] Periods for continuous self-maps of the figure-eight space
    Llibre, J
    Paraños, J
    Rodríguez, JA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07): : 1743 - 1754