Topological entropy of continuous self-maps on a graph

被引:0
|
作者
Juan Luis García Guirao
Jaume Llibre
Wei Gao
机构
[1] Universidad Politécnica de Cartagena,Departamento de Matemática Aplicada y Estadística
[2] Hospital de Marina,Departament de Matemàtiques
[3] Universitat Autònoma de Barcelona,School of Information Science and Technology
[4] Yunnan Normal University,undefined
来源
关键词
Topological graph; Discrete dynamical systems; Lefschetz numbers; Lefschetz zeta function; Periodic point; Period; Topological entropy; 37E25; 37C25; 37C30;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph and f be a continuous self-map on G. Using the Lefschetz zeta function of f, we provide a sufficient condition in order that f has positive topological entropy. Moreover, for some classes of graphs we improve this condition making it easier to check.
引用
收藏
相关论文
共 50 条
  • [21] Fixed points of Scott continuous self-maps
    Kou, H
    Luo, MK
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (11): : 1433 - 1438
  • [22] Fixed points of Scott continuous self-maps
    Kou, Hui
    Luo, Maokang
    2001, Science in China Press (44):
  • [23] PERIODS FOR CONTINUOUS SELF-MAPS OF A BOUQUET OF CIRCLES
    LLIBRE, J
    SA, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (11): : 1035 - 1040
  • [24] On continuous self-maps and homeomorphisms of the Golomb space
    Banakh, Taras
    Mioduszewski, Jerzy
    Turek, Slawomir
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2018, 59 (04): : 423 - 442
  • [25] Entropy and periods for continuous graph maps
    Llibre, Jaume
    Sirvent, Victor F.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [26] Entropy and periods for continuous graph maps
    Jaume Llibre
    Víctor F. Sirvent
    Computational and Applied Mathematics, 2021, 40
  • [27] On dynamics of graph maps with zero topological entropy
    Li, Jian
    Oprocha, Piotr
    Yang, Yini
    Zeng, Tiaoying
    NONLINEARITY, 2017, 30 (12) : 4260 - 4276
  • [28] Topological structure and entropy of mixing graph maps
    Haranczyk, Grzegorz
    Kwietniak, Dominik
    Oprocha, Piotr
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 1587 - 1614
  • [29] GRAPH MAPS WITH ZERO TOPOLOGICAL ENTROPY AND SEQUENCE ENTROPY PAIRS
    Li, Jian
    Liang, Xianjuan
    Oprocha, Piotr
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (11) : 4757 - 4770
  • [30] Continuous semigroups of holomorphic self-maps of the unit disc
    Shoikhet, David
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 59 (04)