Topological entropy of continuous self-maps on a graph

被引:0
|
作者
Juan Luis García Guirao
Jaume Llibre
Wei Gao
机构
[1] Universidad Politécnica de Cartagena,Departamento de Matemática Aplicada y Estadística
[2] Hospital de Marina,Departament de Matemàtiques
[3] Universitat Autònoma de Barcelona,School of Information Science and Technology
[4] Yunnan Normal University,undefined
来源
关键词
Topological graph; Discrete dynamical systems; Lefschetz numbers; Lefschetz zeta function; Periodic point; Period; Topological entropy; 37E25; 37C25; 37C30;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph and f be a continuous self-map on G. Using the Lefschetz zeta function of f, we provide a sufficient condition in order that f has positive topological entropy. Moreover, for some classes of graphs we improve this condition making it easier to check.
引用
收藏
相关论文
共 50 条
  • [1] Topological entropy of continuous self-maps on a graph
    Garcia Guirao, Juan Luis
    Llibre, Jaume
    Gao, Wei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [2] Topological entropy of continuous self-maps on closed surfaces
    Garcia Guirao, Juan Luis
    Llibre, Jaume
    Gao, Wei
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (02) : 203 - 208
  • [3] A group of continuous self-maps on a topological groupoid
    Habib Amiri
    Semigroup Forum, 2018, 96 : 69 - 80
  • [4] A group of continuous self-maps on a topological groupoid
    Amiri, Habib
    SEMIGROUP FORUM, 2018, 96 (01) : 69 - 80
  • [5] Estimates of the topological entropy from below for continuous self-maps on some compact manifolds
    Marzantowicz, Waclaw
    Przytycki, Feliks
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (02) : 501 - 512
  • [6] PRODUCTS OF CONTINUOUS SELF-MAPS ON TOPOLOGICAL-SPACES .2.
    CHEN, GH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (03): : A349 - A349
  • [7] PRODUCTS OF CONTINUOUS SELF-MAPS ON TOPOLOGICAL-SPACES .1.
    CHEN, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A269 - A270
  • [8] Continuous self-maps of the circle
    Schaer, J
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (01): : 108 - 116
  • [9] CHAOS, TOPOLOGICAL ENTROPY AND ALL TOPOLOGICALLY TRANSITIVE SUBSYSTEMS FOR SELF-MAPS OF THE INTERVAL
    周作领
    黄迅成
    ChineseScienceBulletin, 1991, (15) : 1315 - 1315
  • [10] PRODUCTS OF IDEMPOTENTS IN CERTAIN SEMIGROUPS OF CONTINUOUS SELF-MAPS ON TOPOLOGICAL-SPACES
    CHEN, GH
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 15 (JUN): : 477 - 483