Steklov Eigenvalues of Submanifolds with Prescribed Boundary in Euclidean Space

被引:0
|
作者
Bruno Colbois
Alexandre Girouard
Katie Gittins
机构
[1] Université de Neuchâtel,Institut de Mathématiques
[2] Université Laval,Département de mathématiques et de statistique, Pavillon Alexandre
[3] Max Planck Institute for Mathematics,Vachon
来源
关键词
Steklov problem; Euclidean space; Prescribed boundary; manifolds; Hypersurfaces of revolution; 35P15; 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain upper and lower bounds for Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. A very general upper bound is proved, which depends only on the geometry of the fixed boundary and on the measure of the interior. Sharp lower bounds are given for hypersurfaces of revolution with connected boundary: We prove that each eigenvalue is uniquely minimized by the ball. We also observe that each surface of revolution with connected boundary is Steklov isospectral to the disk.
引用
收藏
页码:1811 / 1834
页数:23
相关论文
共 50 条
  • [41] Reducibility of complex submanifolds of the complex euclidean space
    Antonio J. Di Scala
    Mathematische Zeitschrift, 2000, 235 : 251 - 257
  • [42] Submanifolds of positive Ricci curvature in a Euclidean space
    Sharief Deshmukh
    Annali di Matematica Pura ed Applicata, 2008, 187 : 59 - 65
  • [43] Complete minimal submanifolds with nullity in Euclidean space
    Marcos Dajczer
    Theodoros Kasioumis
    Andreas Savas-Halilaj
    Theodoros Vlachos
    Mathematische Zeitschrift, 2017, 287 : 481 - 491
  • [44] On the nonexistence of stable currents in submanifolds of a Euclidean space
    Zhang, XS
    TOHOKU MATHEMATICAL JOURNAL, 2004, 56 (04) : 491 - 499
  • [45] Complete minimal submanifolds with nullity in Euclidean space
    Dajczer, Marcos
    Kasioumis, Theodoros
    Savas-Halilaj, Andreas
    Vlachos, Theodoros
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) : 481 - 491
  • [46] SUBMANIFOLDS OF HUA DOMAINS AND THE COMPLEX EUCLIDEAN SPACE
    Ma, Huibo
    Hao, Yihong
    Cheng, Xiaoliang
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (04): : 785 - 794
  • [47] Multiplicative rectifying submanifolds of multiplicative Euclidean space
    Aydin, Muhittin Evren
    Has, Aykut
    Yilmaz, Beyhan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 329 - 339
  • [48] Reducibility of complex submanifolds of the complex euclidean space
    Di Scala, AJ
    MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (02) : 251 - 257
  • [49] Twisted-Austere Submanifolds in Euclidean Space
    Ivey, Thomas A.
    Karigiannis, Spiro
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [50] WILLMORE LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACE
    Shu, Shichang
    ARS COMBINATORIA, 2013, 109 : 45 - 64