Steklov Eigenvalues of Submanifolds with Prescribed Boundary in Euclidean Space

被引:0
|
作者
Bruno Colbois
Alexandre Girouard
Katie Gittins
机构
[1] Université de Neuchâtel,Institut de Mathématiques
[2] Université Laval,Département de mathématiques et de statistique, Pavillon Alexandre
[3] Max Planck Institute for Mathematics,Vachon
来源
关键词
Steklov problem; Euclidean space; Prescribed boundary; manifolds; Hypersurfaces of revolution; 35P15; 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain upper and lower bounds for Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. A very general upper bound is proved, which depends only on the geometry of the fixed boundary and on the measure of the interior. Sharp lower bounds are given for hypersurfaces of revolution with connected boundary: We prove that each eigenvalue is uniquely minimized by the ball. We also observe that each surface of revolution with connected boundary is Steklov isospectral to the disk.
引用
收藏
页码:1811 / 1834
页数:23
相关论文
共 50 条
  • [31] A Class of Einstein Submanifolds of Euclidean Space
    Dajczer, M.
    Onti, C. -R.
    Vlachos, Th.
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [32] COMPACT MANIFOLDS WITH FIXED BOUNDARY AND LARGE STEKLOV EIGENVALUES
    Colbois, Bruno
    El Soufi, Ahmad
    Girouard, Alexandre
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (09) : 3813 - 3827
  • [33] An optimization problem for nonlinear Steklov eigenvalues with a boundary potential
    Fernandez Bonder, Julian
    Giubergia, Graciela O.
    Mazzone, Fernando D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) : 234 - 243
  • [34] Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds
    Xiong, Changwei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (12) : 3245 - 3258
  • [35] On caustics of submanifolds and canal hypersurfaces in Euclidean space
    Izumiya, Shyuichi
    Takahashi, Masatomo
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (02) : 501 - 508
  • [36] A gap theorem for minimal submanifolds in Euclidean space
    Zhao, Entao
    Cao, Shunjuan
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (02) : 173 - 177
  • [37] On the Affine Gauss Maps of Submanifolds of Euclidean Space
    Henri Anciaux
    Pierre Bayard
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 137 - 165
  • [38] Submanifolds of positive Ricci curvature in a Euclidean space
    Deshmukh, Sharief
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (01) : 59 - 65
  • [39] Conformal vector fields on submanifolds of a Euclidean space
    Alohali, Hanan
    Alodan, Haila
    Deshmukh, Sharief
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2017, 91 (1-2): : 217 - 233
  • [40] Local Conditions for Triangulating Submanifolds of Euclidean Space
    Jean-Daniel Boissonnat
    Ramsay Dyer
    Arijit Ghosh
    Andre Lieutier
    Mathijs Wintraecken
    Discrete & Computational Geometry, 2021, 66 : 666 - 686