Steklov Eigenvalues of Submanifolds with Prescribed Boundary in Euclidean Space

被引:0
|
作者
Bruno Colbois
Alexandre Girouard
Katie Gittins
机构
[1] Université de Neuchâtel,Institut de Mathématiques
[2] Université Laval,Département de mathématiques et de statistique, Pavillon Alexandre
[3] Max Planck Institute for Mathematics,Vachon
来源
关键词
Steklov problem; Euclidean space; Prescribed boundary; manifolds; Hypersurfaces of revolution; 35P15; 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain upper and lower bounds for Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. A very general upper bound is proved, which depends only on the geometry of the fixed boundary and on the measure of the interior. Sharp lower bounds are given for hypersurfaces of revolution with connected boundary: We prove that each eigenvalue is uniquely minimized by the ball. We also observe that each surface of revolution with connected boundary is Steklov isospectral to the disk.
引用
收藏
页码:1811 / 1834
页数:23
相关论文
共 50 条