QUANTUM LOOP ALGEBRAS AND ℓ-ROOT OPERATORS

被引:0
|
作者
CHARLES YOUNG
机构
[1] University of Hertfordshire,School of Physics, Astronomy and Mathematics
来源
Transformation Groups | 2015年 / 20卷
关键词
Quantum Group; Formal Series; Dynkin Diagram; Cluster Algebra; Tensor Category;
D O I
暂无
中图分类号
学科分类号
摘要
Let g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document} be a simple Lie algebra over ℂ and q ∈ ℂ× transcendental. We consider the category CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{C}}_{\mathcal{P}} $$\end{document} of finite-dimensional representations of the quantum loop algebra Uqℒg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\mathrm{\mathcal{L}}\mathfrak{g}\right) $$\end{document} in which the poles of all ℓ-weights belong to specified finite sets P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P} $$\end{document}. Given the data (g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document}; q;P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P} $$\end{document}), we define an algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document} whose raising/lowering operators are constructed to act with definite ℓ-weight (unlike those of Uqℒg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\mathrm{\mathcal{L}}\mathfrak{g}\right) $$\end{document} itself). It is shown that there is a homomorphism Uqℒg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\mathrm{\mathcal{L}}\mathfrak{g}\right) $$\end{document} → A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document} such that every representation V in CP is the pull-back of a representation of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}.
引用
收藏
页码:1195 / 1226
页数:31
相关论文
共 50 条
  • [41] From Twisted Quantum Loop Algebras to Twisted Yangians
    Conner, Patrick
    Guay, Nicolas
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [42] Meromorphic tensor equivalence for Yangians and quantum loop algebras
    Sachin Gautam
    Valerio Toledano Laredo
    Publications mathématiques de l'IHÉS, 2017, 125 : 267 - 337
  • [43] YANGIANS, QUANTUM LOOP ALGEBRAS, AND ABELIAN DIFFERENCE EQUATIONS
    Gautam, Sachin
    Laredo, Valerio Toledano
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (03) : 775 - 824
  • [44] Deformed constraint algebras from Loop Quantum Gravity
    Reyes, Juan D.
    IX MEXICAN SCHOOL ON GRAVITATION AND MATHEMATICAL PHYSICS: COSMOLOGY FOR THE XXIST CENTURY, 2013, 1548 : 172 - 178
  • [45] On the R-matrix realization of quantum loop algebras
    Liashyk, Andrii
    Pakuliak, Stanislav Z.
    SCIPOST PHYSICS, 2022, 12 (05):
  • [46] Loop quantum cosmology: II. Volume operators
    Bojowald, M
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (06) : 1509 - 1526
  • [47] Review on hermiticity of the volume operators in Loop Quantum Gravity
    Ariwahjoedi, S.
    Husin, I.
    Sebastian, I.
    Zen, F. P.
    GENERAL RELATIVITY AND GRAVITATION, 2019, 51 (05)
  • [48] Review on hermiticity of the volume operators in Loop Quantum Gravity
    S. Ariwahjoedi
    I. Husin
    I. Sebastian
    F. P. Zen
    General Relativity and Gravitation, 2019, 51
  • [49] VERTEX OPERATORS AND REPRESENTATIONS OF QUANTUM UNIVERSAL ENVELOPING-ALGEBRAS
    FATEEV, VA
    LUKYANOV, SL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (07): : 1325 - 1359
  • [50] PARAGRASSMANN ALGEBRAS AS QUANTUM SPACES, PART II: TOEPLITZ OPERATORS
    Bruce Sontz, Stephen
    JOURNAL OF OPERATOR THEORY, 2014, 71 (02) : 411 - 426